-
1
-
-
85060453814
-
Fast algorithms for projected clustering
-
AGGARWAL, C., PROCOPIUC, C., WOLF, J., YU, P., AND PARK, J. 1999. Fast algorithms for projected clustering. In Proceedings of the ACM International Conference on Management of Data.
-
(1999)
Proceedings of the ACM International Conference on Management of Data
-
-
AGGARWAL, C.1
PROCOPIUC, C.2
WOLF, J.3
YU, P.4
PARK, J.5
-
3
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
AGRAWAL, R., GEHRKE, J., GUNOPULOS, D., AND RAGHAVAN, P. 1998. Automatic subspace clustering of high dimensional data for data mining applications. In Proceedings of the ACM International Conference on Management of Data.
-
(1998)
Proceedings of the ACM International Conference on Management of Data
-
-
AGRAWAL, R.1
GEHRKE, J.2
GUNOPULOS, D.3
RAGHAVAN, P.4
-
5
-
-
1942517347
-
Learning distance function using equivalence relations
-
BAR-HILLEL, A., HERTZ, T., SHENTAL, N., AND WEINSHALL, D. 2003. Learning distance function using equivalence relations. In Proceedings of the International Conference on Machine Learning (ICML).
-
(2003)
Proceedings of the International Conference on Machine Learning (ICML)
-
-
BAR-HILLEL, A.1
HERTZ, T.2
SHENTAL, N.3
WEINSHALL, D.4
-
9
-
-
33646511082
-
-
BLANSCH, A., GANARSKI, P., AND KORCZAK, J. 2006. Maclaw: A modular approach for clustering with local attribute weighting. Pattern Recogn. Lett. 27, 11 (Aug.), 1299-1306.
-
BLANSCH, A., GANARSKI, P., AND KORCZAK, J. 2006. Maclaw: A modular approach for clustering with local attribute weighting. Pattern Recogn. Lett. 27, 11 (Aug.), 1299-1306.
-
-
-
-
11
-
-
9444230302
-
Semi-Supervised clustering with user feedback
-
Tech. Rep. TR2003-1892, Cornell University, Ithaca, NY
-
COHN, D., CARUANA, R., AND MCCALLUM, A. 2003. Semi-Supervised clustering with user feedback. Tech. Rep. TR2003-1892, Cornell University, Ithaca, NY.
-
(2003)
-
-
COHN, D.1
CARUANA, R.2
MCCALLUM, A.3
-
12
-
-
85172422910
-
Sensity-Connected sets and their application for trend detection in spatial databases
-
ESTER, M., KRIEGEL, H.-P., SENDER, J., AND XU, X. 1997. Sensity-Connected sets and their application for trend detection in spatial databases. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 10-15.
-
(1997)
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 10-15
-
-
ESTER, M.1
KRIEGEL, H.-P.2
SENDER, J.3
XU, X.4
-
14
-
-
0343442766
-
Knowledge acquisition via incremental conceptual clustering
-
FISHER AND DOUGLAS. 1987. Knowledge acquisition via incremental conceptual clustering. Mach. Learn. 2, 139-172.
-
(1987)
Mach. Learn
, vol.2
, pp. 139-172
-
-
AND DOUGLAS, F.1
-
15
-
-
0346847567
-
Unsupervised learning of prototypes and attribute weights
-
FRIGUI, H. AND NASRAOUI, O. 2004. Unsupervised learning of prototypes and attribute weights. Pattern Recogn. 37, 3, 943-952.
-
(2004)
Pattern Recogn
, vol.37
, Issue.3
, pp. 943-952
-
-
FRIGUI, H.1
NASRAOUI, O.2
-
16
-
-
39149088126
-
Semi-Supervised fuzzy clustering with pairwise-constrained competitive agglomeration
-
GAO, J., TAN, P.-N., AND CHENG, H. 2005. Semi-Supervised fuzzy clustering with pairwise-constrained competitive agglomeration. In IEEE Conference on Fuzzy Systems.
-
(2005)
IEEE Conference on Fuzzy Systems
-
-
GAO, J.1
TAN, P.-N.2
CHENG, H.3
-
17
-
-
34548564268
-
A framework for semi-supervised learning based on subjective and objective clustering criteria
-
HALKIDI, M., GUNOPULOS, D., KUMAR, N., VAZIRGIANNIS, M., AND DOMENICONI., C. 2005. A framework for semi-supervised learning based on subjective and objective clustering criteria. In Proceedings of the IEEE Conference on Data Mining (ICDM).
-
(2005)
Proceedings of the IEEE Conference on Data Mining (ICDM)
-
-
HALKIDI, M.1
GUNOPULOS, D.2
KUMAR, N.3
VAZIRGIANNIS, M.4
DOMENICONI, C.5
-
22
-
-
84893405732
-
Data clustering: A review
-
JAIN, A., MUTTY, M., AND FLYN, R 1999. Data clustering: A review. ACM Comput. Surv. 31, 3.
-
(1999)
ACM Comput. Surv
, vol.31
, pp. 3
-
-
JAIN, A.1
MUTTY, M.2
FLYN, R.3
-
23
-
-
26944481948
-
Subspace clustering of text documents with feature weighting k-means algorithm
-
Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining PAKDD, Advances in Knowledge Discovery and Data Mining, Springer, Berlin
-
JING, L., NG, M., AND HUANG, J. X. 2005. Subspace clustering of text documents with feature weighting k-means algorithm. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD). Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science, vol. 3518. Springer, Berlin.
-
(2005)
Lecture Notes in Computer Science
, vol.3518
-
-
JING, L.1
NG, M.2
HUANG, J.X.3
-
24
-
-
31844447616
-
Semi-Supervised grpah clustering: Akernel approach
-
KULIS, B., BASU, S., DHILLON, I., AND MOONEY, R. 2005. Semi-Supervised grpah clustering: Akernel approach. In Proceedings of the International Conference on Machine Learning (ICML).
-
(2005)
Proceedings of the International Conference on Machine Learning (ICML)
-
-
KULIS, B.1
BASU, S.2
DHILLON, I.3
MOONEY, R.4
-
25
-
-
0001457509
-
Some methods for classification and analysis of multivariate observations
-
University of California Press, Berkeley, CA
-
MACQUEEN, J. 1967. Some methods for classification and analysis of multivariate observations. In Proceedings of the Symposium on Math, Statistics and Probability, University of California Press, Berkeley, CA, 281-297.
-
(1967)
Proceedings of the Symposium on Math, Statistics and Probability
, pp. 281-297
-
-
MACQUEEN, J.1
-
26
-
-
0033886806
-
Text classification labeled and unlabeled documents using em
-
NIGAM, K., MCCALLUM, K., THRUN, S., AND MITCHELL, T. 2000. Text classification labeled and unlabeled documents using em. Mach. Learn. 39, 103-134.
-
(2000)
Mach. Learn
, vol.39
, pp. 103-134
-
-
NIGAM, K.1
MCCALLUM, K.2
THRUN, S.3
MITCHELL, T.4
-
27
-
-
0004161838
-
-
Cambridge University Press
-
PRESS, W H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY, B. R 1997. Numerical Recipes in C, the Art of Scientific Computing. Cambridge University Press.
-
(1997)
Numerical Recipes in C, the Art of Scientific Computing
-
-
PRESS, W.H.1
TEUKOLSKY, S.A.2
VETTERLING, W.T.3
FLANNERY, B.R.4
-
28
-
-
0842309161
-
Discovering molecular pathways from protein interaction and gene expression data
-
SEGAL, E., WANG, H., AND KOLLER, D. 2003. Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics 19, 264-272.
-
(2003)
Bioinformatics
, vol.19
, pp. 264-272
-
-
SEGAL, E.1
WANG, H.2
KOLLER, D.3
-
29
-
-
25144477650
-
On cluster validity and the information need of users
-
STEIN, B., ZU EISSEN, S. M., AND WIBROCK, F. 2003. On cluster validity and the information need of users. In Proceedings of the Artificial, Intelligenece and Applications Conference.
-
(2003)
Proceedings of the Artificial, Intelligenece and Applications Conference
-
-
STEIN, B.1
ZU EISSEN, S.M.2
WIBROCK, F.3
-
31
-
-
0042377235
-
Constrained k-means clustering with background knowledge
-
WAGSTAFF, K., CARDIE, C., ROGERS, S., AND SCHROEDL, S. 2001. Constrained k-means clustering with background knowledge. In Proceedings of the International Conference on Machine Learning (ICML). 577-584.
-
(2001)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 577-584
-
-
WAGSTAFF, K.1
CARDIE, C.2
ROGERS, S.3
SCHROEDL, S.4
-
32
-
-
85133386144
-
Distance metric learning, with application to clustering with side-information
-
XING, E. P., NG, A. Y., JORDAN, M. I., AND RUSSELL, S. 2002. Distance metric learning, with application to clustering with side-information. In Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS).
-
(2002)
Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS)
-
-
XING, E.P.1
NG, A.Y.2
JORDAN, M.I.3
RUSSELL, S.4
-
33
-
-
28444491389
-
On discovery of extremely low-dimensional clusters using semi-supervised projected clustering
-
YIP, K., CHEUNG, D., AND NG, M. 2005. On discovery of extremely low-dimensional clusters using semi-supervised projected clustering. In Proceedings of the 21st International Conference on Data Engineering, 329-240.
-
(2005)
Proceedings of the 21st International Conference on Data Engineering
, pp. 329-240
-
-
YIP, K.1
CHEUNG, D.2
NG, M.3
|