메뉴 건너뛰기




Volumn 27, Issue 11, 2006, Pages 1299-1306

MACLAW: A modular approach for clustering with local attribute weighting

Author keywords

Clustering criterion; Complex data; Cooperative coevolution; Feature weighting; Modular clustering

Indexed keywords

DATA REDUCTION; EVOLUTIONARY ALGORITHMS; FEATURE EXTRACTION; LEARNING SYSTEMS;

EID: 33646511082     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2005.07.027     Document Type: Article
Times cited : (18)

References (21)
  • 1
    • 33646503105 scopus 로고    scopus 로고
    • Blake, C., Merz, C., 1998. UCI repository of machine learning databases. URL: .
  • 2
    • 33646508203 scopus 로고    scopus 로고
    • Blansché, A., Gançarski, P., 2004. Application aux images hyperspectrales d'une nouvelle méthode de sélection d'attributs pour la classification d'objets complexes. In: Proc. of Workshop "Fouille de Données Complexes dans un processus d'extraction de connaissances" in EGC'04, Clermont-Ferrand, France, pp. 103-114.
  • 3
    • 0037399775 scopus 로고    scopus 로고
    • Cluster validation techniques for genome expression data
    • Bolshakova N., and Azuaje F. Cluster validation techniques for genome expression data. Signal Process. 83 4 (2003) 825-833
    • (2003) Signal Process. , vol.83 , Issue.4 , pp. 825-833
    • Bolshakova, N.1    Azuaje, F.2
  • 4
    • 1842762839 scopus 로고    scopus 로고
    • An optimization algorithm for clustering using weighted dissimilarity measures
    • Chan E., Ching W., Ng M., and Huang J. An optimization algorithm for clustering using weighted dissimilarity measures. Pattern Recognition 37 (2004) 943-952
    • (2004) Pattern Recognition , vol.37 , pp. 943-952
    • Chan, E.1    Ching, W.2    Ng, M.3    Huang, J.4
  • 5
    • 33646501786 scopus 로고    scopus 로고
    • Dash, M., Liu, H., 2000. Feature selection for clustering. In: Proc. Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD).
  • 6
    • 0346847567 scopus 로고    scopus 로고
    • Unsupervised learning of prototypes and attribute weights
    • Frigui H., and Nasraoui O. Unsupervised learning of prototypes and attribute weights. Pattern Recognition 34 (2004) 567-581
    • (2004) Pattern Recognition , vol.34 , pp. 567-581
    • Frigui, H.1    Nasraoui, O.2
  • 8
    • 84957539111 scopus 로고    scopus 로고
    • Howe, N., Cardie, C., 1997. Examining locally varying weights for nearest neighbor algorithms. In: ICCBR, pp. 455-466.
  • 9
    • 33646527666 scopus 로고    scopus 로고
    • Howe, N., Cardie, C., 1999. Weighting unusual feature types. Tech. Rep. TR99-1735, Ithaca.
  • 10
    • 33646528756 scopus 로고    scopus 로고
    • John, G., Kohavi, R., Pfleger, K., 1994. Irrelevant features and the subset selection problem. In: Proc. Eleventh Internat. Conf. on Machine Learning, pp. 121-129.
  • 12
    • 0035514007 scopus 로고    scopus 로고
    • Resampling method for unsupervised estimation of cluster validity
    • Levine E., and Domany E. Resampling method for unsupervised estimation of cluster validity. Neural Comput. 13 11 (2001) 2573-2593
    • (2001) Neural Comput. , vol.13 , Issue.11 , pp. 2573-2593
    • Levine, E.1    Domany, E.2
  • 13
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • University of California Press, Berkeley, CA
    • MacQueen J. Some methods for classification and analysis of multivariate observations. Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability (1965), University of California Press, Berkeley, CA 281-297
    • (1965) Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability , pp. 281-297
    • MacQueen, J.1
  • 14
    • 84878605668 scopus 로고    scopus 로고
    • Mayer, H., 1998. Symbiotic coevolution of artificial neural networks and training data sets. In: Proc. Fifth Internat. Conf. on Parallel Problem Solving from Nature, pp. 511-520.
  • 15
    • 85027492413 scopus 로고    scopus 로고
    • Potter, M., De Jong, K., 1994. A cooperative coevolutionary approach to function optimization. In: Proc. Third Conf. on Parallel Problem Solving from Nature, pp. 249-257.
  • 16
    • 33646531280 scopus 로고    scopus 로고
    • Potter, M., De Jong, K., Grefenstette, J., 1995. A coevolutionary approach to learning sequential decision rules. In: Proc. Sixth Internat. Conf. on Genetic Algorithms, pp. 366-372.
  • 17
    • 33646504932 scopus 로고    scopus 로고
    • Tibshirani, R., Walther, G., Hastie, T., 2000. Estimating the number of clusters in a dataset via the Gap statistic. Tech. Rep. 208, Department of Statistics, Stanford University.
  • 18
    • 33646530160 scopus 로고    scopus 로고
    • Wemmert, C., 2000. Classification hybride distribuée par collaboration de méthodes non supervisées. Thèse de doctorat, Université Louis Pasteur, Strasbourg.
  • 19
    • 0033350366 scopus 로고    scopus 로고
    • Wemmert, C., Gançarski, P., Korczak, J., 1999. An unsupervised collaborative learning method to refine classification hierarchies. In: Proc. IEEE 11th Internat. Conf. on Tools with Artificial Intelligence, pp. 263-270.
  • 21
    • 0031073477 scopus 로고    scopus 로고
    • A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms
    • Wettschereck D., Aha D., and Mohri T. A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artif. Intell. Rev. 11 1-5 (1997) 273-314
    • (1997) Artif. Intell. Rev. , vol.11 , Issue.1-5 , pp. 273-314
    • Wettschereck, D.1    Aha, D.2    Mohri, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.