메뉴 건너뛰기




Volumn 27, Issue 2, 2008, Pages 243-256

Hierarchical models for ROC curve summary measures: Design and analysis of multi-reader, multi-modality studies of medical tests

Author keywords

Hierarchical modelling; Meta analysis; Multi reader multi modality ROC analysis; Sample size determination

Indexed keywords

AREA UNDER THE CURVE; ARTICLE; BAYES THEOREM; BREAST DISEASE; COMPUTER AIDED DESIGN; CORRELATION ANALYSIS; DATA ANALYSIS; DIAGNOSTIC ACCURACY; DIGITAL MAMMOGRAPHY; HUMAN; INTERMETHOD COMPARISON; MATHEMATICAL COMPUTING; METHODOLOGY; ROC CURVE; SAMPLE SIZE; SCREENING TEST; SIMULATION;

EID: 38849110678     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.2828     Document Type: Article
Times cited : (34)

References (40)
  • 1
    • 0026664983 scopus 로고
    • Receiver operating characteristic rating analysis: Generalization to the population of readers and patients with Jackknife method
    • Dorfman DD, Berbaum KS, Metz CE. Receiver operating characteristic rating analysis: generalization to the population of readers and patients with Jackknife method. Investigative Radiology 1992; 27(9):723-731.
    • (1992) Investigative Radiology , vol.27 , Issue.9 , pp. 723-731
    • Dorfman, D.D.1    Berbaum, K.S.2    Metz, C.E.3
  • 2
    • 0029329442 scopus 로고
    • Multireader, multicase receiver operating characteristic methodology: A bootstrap analysis
    • Dorfman DD, Berbaum KS, Lenth RV. Multireader, multicase receiver operating characteristic methodology: a bootstrap analysis. Academic Radiology 1995; 2:626-633.
    • (1995) Academic Radiology , vol.2 , pp. 626-633
    • Dorfman, D.D.1    Berbaum, K.S.2    Lenth, R.V.3
  • 3
    • 0034028155 scopus 로고    scopus 로고
    • Components-of-variance models and multiple-bootstrap experiments: An alternative method for random-effects, receiver operating characteristic analysis
    • Beiden SV, Wagner RF, Campbell G. Components-of-variance models and multiple-bootstrap experiments: an alternative method for random-effects, receiver operating characteristic analysis. Academic Radiology 2000; 7(5):341-349.
    • (2000) Academic Radiology , vol.7 , Issue.5 , pp. 341-349
    • Beiden, S.V.1    Wagner, R.F.2    Campbell, G.3
  • 4
    • 0029257706 scopus 로고
    • Multi-reader multi-modality ROC studies: Hypothesis testing and sample size determination using an ANOVA approach with dependent observations
    • Obuchowski NA. Multi-reader multi-modality ROC studies: hypothesis testing and sample size determination using an ANOVA approach with dependent observations. Academic Radiology 1995; 2:S22-S29.
    • (1995) Academic Radiology , vol.2
    • Obuchowski, N.A.1
  • 5
    • 0000889433 scopus 로고
    • Hypothesis testing of diagnostic accuracy for multiple readers and multiple tests: An ANOVA approach with dependent observations
    • Obuchowski NA. Hypothesis testing of diagnostic accuracy for multiple readers and multiple tests: an ANOVA approach with dependent observations. Communications in Statistics, Part B: Simulation and Computation 1995; 24(2):285-308.
    • (1995) Communications in Statistics, Part B: Simulation and Computation , vol.24 , Issue.2 , pp. 285-308
    • Obuchowski, N.A.1
  • 10
    • 38649132833 scopus 로고
    • Maximum likelihood estimation of parameters of signal detection theory and determination of confidence intervals - rating method data
    • Dorfman DD, Alf E. Maximum likelihood estimation of parameters of signal detection theory and determination of confidence intervals - rating method data. Journal of Mathematical Psychology 1969; 6:487-496.
    • (1969) Journal of Mathematical Psychology , vol.6 , pp. 487-496
    • Dorfman, D.D.1    Alf, E.2
  • 11
    • 0029740924 scopus 로고    scopus 로고
    • Ordinal regression methodology for ROC curves derived from correlated data
    • Toledano A, Gatsonis CA. Ordinal regression methodology for ROC curves derived from correlated data. Statistics in Medicine 1996; 15:1807-1826.
    • (1996) Statistics in Medicine , vol.15 , pp. 1807-1826
    • Toledano, A.1    Gatsonis, C.A.2
  • 12
    • 0023769482 scopus 로고
    • A general regression methodology for ROC curve estimation
    • Tosteson A, Begg C. A general regression methodology for ROC curve estimation. Medical Decision Making 1988; 8:204-215.
    • (1988) Medical Decision Making , vol.8 , pp. 204-215
    • Tosteson, A.1    Begg, C.2
  • 13
    • 0032525017 scopus 로고    scopus 로고
    • Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data
    • Metz C, Herman B, Shen J. Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data. Statistics in Medicine 1998; 17(9):1033-1053.
    • (1998) Statistics in Medicine , vol.17 , Issue.9 , pp. 1033-1053
    • Metz, C.1    Herman, B.2    Shen, J.3
  • 14
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
    • Delong ER, Delong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988; 44(3):837-845.
    • (1988) Biometrics , vol.44 , Issue.3 , pp. 837-845
    • Delong, E.R.1    Delong, D.M.2    Clarke-Pearson, D.L.3
  • 15
    • 0030844917 scopus 로고    scopus 로고
    • Sample size determination for diagnostic accuracy studies involving binormal ROC curve indices
    • Obuchowski NA, McClish D. Sample size determination for diagnostic accuracy studies involving binormal ROC curve indices. Statistics in Medicine 1997; 16:1529-1542.
    • (1997) Statistics in Medicine , vol.16 , pp. 1529-1542
    • Obuchowski, N.A.1    McClish, D.2
  • 16
    • 0141514392 scopus 로고    scopus 로고
    • Three methods for analyzing correlated ROC curves: A comparison in real data sets
    • Toledano A. Three methods for analyzing correlated ROC curves: a comparison in real data sets. Statistics in Medicine 2003; 22:2919-2933.
    • (2003) Statistics in Medicine , vol.22 , pp. 2919-2933
    • Toledano, A.1
  • 17
    • 0034557373 scopus 로고    scopus 로고
    • A general class of hierarchical ordinal regression models with applications to correlated ROC analysis
    • Ishwaran H, Gatsonis CA. A general class of hierarchical ordinal regression models with applications to correlated ROC analysis. Canadian Journal of Statistics 2000; 28:731-750.
    • (2000) Canadian Journal of Statistics , vol.28 , pp. 731-750
    • Ishwaran, H.1    Gatsonis, C.A.2
  • 18
    • 0031752721 scopus 로고    scopus 로고
    • Monte Carlo validation of a multireader method for receiver operating characteristic discrete rating data: Factorial experimental design
    • Dorfman DD, Berbaum KS, Lenth RV, Chen YF, Donaghy BA. Monte Carlo validation of a multireader method for receiver operating characteristic discrete rating data: factorial experimental design. Academic Radiology 1998; 5(9):591-602.
    • (1998) Academic Radiology , vol.5 , Issue.9 , pp. 591-602
    • Dorfman, D.D.1    Berbaum, K.S.2    Lenth, R.V.3    Chen, Y.F.4    Donaghy, B.A.5
  • 20
  • 21
    • 0030029732 scopus 로고    scopus 로고
    • Empirical Bayes combination of estimated areas under ROC curves using estimating equations
    • Zhou X-H. Empirical Bayes combination of estimated areas under ROC curves using estimating equations. Medical Decision Making 1996; 16:24-28.
    • (1996) Medical Decision Making , vol.16 , pp. 24-28
    • Zhou, X.-H.1
  • 23
    • 0033277508 scopus 로고    scopus 로고
    • Empiric assessment of parameters that affect the design of multireader receiver operating characteristic studies
    • Rockette HE, Campbell WL, Britton CA, Holbert JM, King JL, Gur D. Empiric assessment of parameters that affect the design of multireader receiver operating characteristic studies. Academic Radiology 1999; 6(12):723-729.
    • (1999) Academic Radiology , vol.6 , Issue.12 , pp. 723-729
    • Rockette, H.E.1    Campbell, W.L.2    Britton, C.A.3    Holbert, J.M.4    King, J.L.5    Gur, D.6
  • 25
    • 0346983718 scopus 로고    scopus 로고
    • The choice of sample size
    • Lindley DV. The choice of sample size. The Statistician 1997; 46(2):129-138.
    • (1997) The Statistician , vol.46 , Issue.2 , pp. 129-138
    • Lindley, D.V.1
  • 26
    • 0042961774 scopus 로고    scopus 로고
    • On Bayesian analysis, Bayesian decision theory and the sample size problem
    • Pham-Gia T. On Bayesian analysis, Bayesian decision theory and the sample size problem. The Statistician 1997; 46:139-144.
    • (1997) The Statistician , vol.46 , pp. 139-144
    • Pham-Gia, T.1
  • 27
    • 0346789285 scopus 로고    scopus 로고
    • Sample size determination: A review
    • Adcock CJ. Sample size determination: a review. The Statistician 1997; 46(2):261-283.
    • (1997) The Statistician , vol.46 , Issue.2 , pp. 261-283
    • Adcock, C.J.1
  • 28
    • 0004535333 scopus 로고    scopus 로고
    • Interval-based versus decision theoretic criteria for the choice of sample size
    • Joseph L, Wolfson DB. Interval-based versus decision theoretic criteria for the choice of sample size. The Statistician 1997; 46(2):145-149.
    • (1997) The Statistician , vol.46 , Issue.2 , pp. 145-149
    • Joseph, L.1    Wolfson, D.B.2
  • 29
    • 0346613486 scopus 로고    scopus 로고
    • Bayesian sample size determination for normal means and differences between normal means
    • Joseph L, Belisle P. Bayesian sample size determination for normal means and differences between normal means. The Statistician 1997; 46:209-226.
    • (1997) The Statistician , vol.46 , pp. 209-226
    • Joseph, L.1    Belisle, P.2
  • 30
    • 0034360783 scopus 로고    scopus 로고
    • Bayesian sample size determination for estimating binomial parameters from data subject to misclassification
    • Rahme E, Joseph L, Gyorkos TW. Bayesian sample size determination for estimating binomial parameters from data subject to misclassification. Applied Statistics 2000; 49(1): 119-128.
    • (2000) Applied Statistics , vol.49 , Issue.1 , pp. 119-128
    • Rahme, E.1    Joseph, L.2    Gyorkos, T.W.3
  • 31
    • 0041960083 scopus 로고    scopus 로고
    • A Bayesian view of the classical sample size determination
    • Technical Report, Department of Biostatistics, MD Anderson Cancer Center: Houston, TX
    • Inoue L, Berry DA, Parmigiani G. A Bayesian view of the classical sample size determination. Technical Report, Department of Biostatistics, MD Anderson Cancer Center: Houston, TX, 2000.
    • (2000)
    • Inoue, L.1    Berry, D.A.2    Parmigiani, G.3
  • 32
    • 0035974326 scopus 로고    scopus 로고
    • On determination of sample size in hierarchical binomial models
    • Zou KH, Normand SLT. On determination of sample size in hierarchical binomial models. Statistics in Medicine 2001; 20:2163-2182.
    • (2001) Statistics in Medicine , vol.20 , pp. 2163-2182
    • Zou, K.H.1    Normand, S.L.T.2
  • 33
    • 0037083244 scopus 로고    scopus 로고
    • Sample size considerations in observational health care quality studies
    • Normand SLT, Zou KH. Sample size considerations in observational health care quality studies. Statistics in Medicine 2002; 21:331-345.
    • (2002) Statistics in Medicine , vol.21 , pp. 331-345
    • Normand, S.L.T.1    Zou, K.H.2
  • 34
    • 0041419339 scopus 로고    scopus 로고
    • A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models
    • Wang F, Gelfand AE. A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models. Statistical Science 2002; 17(2):193-208.
    • (2002) Statistical Science , vol.17 , Issue.2 , pp. 193-208
    • Wang, F.1    Gelfand, A.E.2
  • 35
    • 0028301851 scopus 로고
    • Computing sample size for receiver operating characteristic studies
    • Obuchowski NA. Computing sample size for receiver operating characteristic studies, Investigative Radiology 1994; 29(2):238-243.
    • (1994) Investigative Radiology , vol.29 , Issue.2 , pp. 238-243
    • Obuchowski, N.A.1
  • 36
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982; 143:29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 37
  • 38
    • 0001574731 scopus 로고
    • Efficient Parametrization for normal linear mixed effects models
    • Gelfand AE, Sahu S, Carlin BP. Efficient Parametrization for normal linear mixed effects models. Biometrika 1995; 82:479-488.
    • (1995) Biometrika , vol.82 , pp. 479-488
    • Gelfand, A.E.1    Sahu, S.2    Carlin, B.P.3
  • 39
    • 19144371567 scopus 로고    scopus 로고
    • A comparison of the Dorfman-Berbaum-Metz and Obuchowski-Rockette methods for receiver operating characteristic (ROC) data
    • Hillis SL, Obuchowski NA, Schartz KM, Berbaum KS. A comparison of the Dorfman-Berbaum-Metz and Obuchowski-Rockette methods for receiver operating characteristic (ROC) data. Statistics in Medicine 2005; 24:1579-1607.
    • (2005) Statistics in Medicine , vol.24 , pp. 1579-1607
    • Hillis, S.L.1    Obuchowski, N.A.2    Schartz, K.M.3    Berbaum, K.S.4
  • 40
    • 38849197091 scopus 로고    scopus 로고
    • Hillis SL. A comparison of denominator degrees of freedom methods for multiple observer ROC analysis, 15 March 2006 (published online).
    • Hillis SL. A comparison of denominator degrees of freedom methods for multiple observer ROC analysis, 15 March 2006 (published online).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.