-
2
-
-
0242669328
-
-
Cooney, K. D.; Cundari, T. R.; Hoffman, N. W.; Pittard, K. A.; Temple, M. D.; Zhao, Y. J. Am. Chem. Soc. 2003, 125, 4318-4324.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 4318-4324
-
-
Cooney, K.D.1
Cundari, T.R.2
Hoffman, N.W.3
Pittard, K.A.4
Temple, M.D.5
Zhao, Y.6
-
4
-
-
0035799157
-
-
For reviews, see: a
-
For reviews, see: (a) Rowlands, G. J. Tetrahedron 2001, 57, 1865-1882.
-
(2001)
Tetrahedron
, vol.57
, pp. 1865-1882
-
-
Rowlands, G.J.1
-
5
-
-
0035977261
-
-
(b) Noyori, R.; Yamakawa, M.; Hashiguchi, S. J. Org. Chem. 2001, 66, 7931-7944.
-
(2001)
J. Org. Chem
, vol.66
, pp. 7931-7944
-
-
Noyori, R.1
Yamakawa, M.2
Hashiguchi, S.3
-
6
-
-
0030472830
-
-
(c) Helmchen, G.; Steinhagen, H. Angew. Chem., Int. Ed. 1996, 35, 2339-2342.
-
(1996)
Angew. Chem., Int. Ed
, vol.35
, pp. 2339-2342
-
-
Helmchen, G.1
Steinhagen, H.2
-
9
-
-
0035887221
-
-
Grotjahn, D. B.; Incarvito, C. D.; Rheingold, A. L. Angew. Chem., Int. Ed. Engl. 2001, 40, 3884-3887.
-
(2001)
Angew. Chem., Int. Ed. Engl
, vol.40
, pp. 3884-3887
-
-
Grotjahn, D.B.1
Incarvito, C.D.2
Rheingold, A.L.3
-
11
-
-
33846318531
-
-
See also
-
See also Labonne, A.; Kribber, T.; Hintermann, L. Org. Lett. 2006, 8, 5853-5856.
-
(2006)
Org. Lett
, vol.8
, pp. 5853-5856
-
-
Labonne, A.1
Kribber, T.2
Hintermann, L.3
-
12
-
-
9944239707
-
-
Grzesiek, S.; Cordier, F.; Jaravine, V.; Barfield, M. Prog. Nucl. Magn. Reson. Spectrosc. 2004, 45, 275-300.
-
(2004)
Prog. Nucl. Magn. Reson. Spectrosc
, vol.45
, pp. 275-300
-
-
Grzesiek, S.1
Cordier, F.2
Jaravine, V.3
Barfield, M.4
-
13
-
-
38349064131
-
-
See Supporting Information for details
-
See Supporting Information for details.
-
-
-
-
15
-
-
0033938911
-
-
Baur, J.; Jacobsen, H.; Burger, P.; Artus, G.; Berke, H.; Dahlenburg, L. Eur. J. Inorg. Chem. 2000, 1411-1422.
-
(2000)
Eur. J. Inorg. Chem
, pp. 1411-1422
-
-
Baur, J.1
Jacobsen, H.2
Burger, P.3
Artus, G.4
Berke, H.5
Dahlenburg, L.6
-
16
-
-
38349055670
-
-
Remarkably, direct ionization in the absence of water did not give 4 cleanly, even after prolonged reaction times or heating.
-
Remarkably, direct ionization in the absence of water did not give 4 cleanly, even after prolonged reaction times or heating.
-
-
-
-
17
-
-
34547304103
-
-
Grotjahn, D. B.; Zeng, X.; Cooksy, A. L.; Kassel, W. S.; DiPasquale, A. G.; Zakharov, L. N.; Rheingold, A. L. Organometallics 2007, 26, 3385-3402.
-
(2007)
Organometallics
, vol.26
, pp. 3385-3402
-
-
Grotjahn, D.B.1
Zeng, X.2
Cooksy, A.L.3
Kassel, W.S.4
DiPasquale, A.G.5
Zakharov, L.N.6
Rheingold, A.L.7
-
18
-
-
38349029761
-
-
IR spectroscopy has been a major tool for studying hydrogen bonding of organic alkyne derivatives (e.g., refs 14a-e), but the high reactivity of 5a thus far has precluded observing its IR spectrum. (a) Steiner, T. Adv. Mol. Struct. Res. 1998, 4, 43-77.
-
IR spectroscopy has been a major tool for studying hydrogen bonding of organic alkyne derivatives (e.g., refs 14a-e), but the high reactivity of 5a thus far has precluded observing its IR spectrum. (a) Steiner, T. Adv. Mol. Struct. Res. 1998, 4, 43-77.
-
-
-
-
19
-
-
0003594410
-
-
(b) Kreevoy, M. M.; Charman, H. B.; Vinard, D. R. J. Am. Chem. Soc. 1961, 83, 1978-1983.
-
(1961)
J. Am. Chem. Soc
, vol.83
, pp. 1978-1983
-
-
Kreevoy, M.M.1
Charman, H.B.2
Vinard, D.R.3
-
20
-
-
0000527955
-
-
(c) Jeng, M. L. H.; DeLaat, A. M.; Ault, B. S. J. Phys. Chem. 1989, 93, 3997-4000.
-
(1989)
J. Phys. Chem
, vol.93
, pp. 3997-4000
-
-
Jeng, M.L.H.1
DeLaat, A.M.2
Ault, B.S.3
-
22
-
-
8144223487
-
-
(e) Sundararajan, K.; Sankaran, K.; Viswanathan, K. S. J. Mol. Struct. 2004, 733, 187-192.
-
(2004)
J. Mol. Struct
, vol.733
, pp. 187-192
-
-
Sundararajan, K.1
Sankaran, K.2
Viswanathan, K.S.3
-
23
-
-
0000542646
-
-
Pecul, M.; Leszczynski, J.; Sadlej, J. J. Chem. Phys. 2000, 112, 7930-7938.
-
(2000)
J. Chem. Phys
, vol.112
, pp. 7930-7938
-
-
Pecul, M.1
Leszczynski, J.2
Sadlej, J.3
-
24
-
-
38349046047
-
-
Our calculations predict that 1JCH and 2JCH increase from 5c to 5a, and ascribe the shift to the Fermi contact contribution. This contribution increases with the s-character of the CH bonding MO, as the CCH bond angle becomes more linear (5c, 154°; 5a, 162°) with hydrogen bonding. These effects are a subject of future study
-
CH increase from 5c to 5a, and ascribe the shift to the Fermi contact contribution. This contribution increases with the s-character of the CH bonding MO, as the CCH bond angle becomes more linear (5c, 154°; 5a, 162°) with hydrogen bonding. These effects are a subject of future study.
-
-
-
-
25
-
-
0003258675
-
-
At -20°C, coupling was obscured by broadening, presumably due to alkyne rotation. See for example: Carbó, J. J, Crochet, P, Esteruelas, M. A, Jean, Y, Lledos, A, Lopez, A. M, Onate, E. Organometallics 2002, 21, 305-314. 1hJNH was not observed, but this could be expected to be less than 1 Hz
-
NH was not observed, but this could be expected to be less than 1 Hz.
-
-
-
-
26
-
-
0037996657
-
-
Del Bene, J. E.; Perera, S. A.; Bartlett, R. J.; Yanez, M.; Mo, O.; Elguero, J.; Alkorta, I. J. Phys. Chem. A 2003, 107, 3222-3227.
-
(2003)
J. Phys. Chem. A
, vol.107
, pp. 3222-3227
-
-
Del Bene, J.E.1
Perera, S.A.2
Bartlett, R.J.3
Yanez, M.4
Mo, O.5
Elguero, J.6
Alkorta, I.7
-
27
-
-
38349055671
-
-
In addition, preliminary calculation of 2hJ CN gave values of -3.4 and -6.7 Hz, averaging to -5 Hz. Comparison of the other experimentally determined NMR coupling constants shown in Scheme 2 with calculated values shows that the latter are consistently about 20% too high
-
CN gave values of -3.4 and -6.7 Hz, averaging to -5 Hz. Comparison of the other experimentally determined NMR coupling constants shown in Scheme 2 with calculated values shows that the latter are consistently about 20% too high.
-
-
-
|