-
2
-
-
0026867929
-
Partially finite convex programming, Part I: Quasi-relative interiors and duality
-
Borwein, J.M., Lewis, A.S.: Partially finite convex programming, Part I: Quasi-relative interiors and duality. Math. Program. 57, 15-48 (1992)
-
(1992)
Math. Program.
, vol.57
, pp. 15-48
-
-
Borwein, J.M.1
Lewis, A.S.2
-
4
-
-
0026867587
-
Generalizations of Slater's constraint qualification for infinite convex programs
-
Jeyakumar, V., Wolkowicz, H.: Generalizations of Slater's constraint qualification for infinite convex programs. Math. Program. 57, 85-102 (1992)
-
(1992)
Math. Program.
, vol.57
, pp. 85-102
-
-
Jeyakumar, V.1
Wolkowicz, H.2
-
5
-
-
0031285890
-
Strong duality for semidefinite programming
-
Ramana, M.V., Tunçel, L., Wolkowicz, H.: Strong duality for semidefinite programming. SIAM J. Optim. 7, 644-662 (1997)
-
(1997)
SIAM J. Optim.
, vol.7
, pp. 644-662
-
-
Ramana, M.V.1
Tunçel, L.2
Wolkowicz, H.3
-
7
-
-
29144527037
-
The strong conical hull intersection property for convex programming
-
Jeyakumar, V.: The strong conical hull intersection property for convex programming. Math. Program. 106A, 81-92 (2006)
-
(2006)
Math. Program.
, vol.106
, pp. 81-92
-
-
Jeyakumar, V.1
-
9
-
-
35448976508
-
A note on strong duality in convex semidefinite optimization: Necessary and sufficient conditions
-
Jeyakumar, V.: A note on strong duality in convex semidefinite optimization: Necessary and sufficient conditions. Optim. Lett. 2, 15-25 (2008)
-
(2008)
Optim. Lett.
, vol.2
, pp. 15-25
-
-
Jeyakumar, V.1
-
10
-
-
0001030731
-
Strong conical hull intersection property, bounded linear regularity, Jameson's property (G), and error bounds in convex optimization
-
Bauschke, H.H., Borwein, J.M., Li, W.: Strong conical hull intersection property, bounded linear regularity, Jameson's property (G), and error bounds in convex optimization. Math. Program. 86, 135-160 (1999)
-
(1999)
Math. Program.
, vol.86
, pp. 135-160
-
-
Bauschke, H.H.1
Borwein, J.M.2
Li, W.3
-
11
-
-
20144382882
-
A simple closure condition for the normal cone intersection formula
-
6
-
Burachik, R.S., Jeyakumar, V.: A simple closure condition for the normal cone intersection formula. Proc. Am. Math. Soc. 133(6), 1741-1748 (2004)
-
(2004)
Proc. Am. Math. Soc.
, vol.133
, pp. 1741-1748
-
-
Burachik, R.S.1
Jeyakumar, V.2
-
12
-
-
23744470880
-
Limiting ε-subgradient characterizations of constrained best approximation
-
Jeyakumar, V., Mohebi, H.: Limiting ε-subgradient characterizations of constrained best approximation. J. Approx. Theory 135, 145-159 (2005)
-
(2005)
J. Approx. Theory
, vol.135
, pp. 145-159
-
-
Jeyakumar, V.1
Mohebi, H.2
-
13
-
-
2442590119
-
Complete dual characterizations of optimality for convex semidefinite programming
-
Jeyakumar, V., Nealon, M.: Complete dual characterizations of optimality for convex semidefinite programming. Canadian Math. Soc. Conf. Proc. 27, 165-173 (2000)
-
(2000)
Canadian Math. Soc. Conf. Proc.
, vol.27
, pp. 165-173
-
-
Jeyakumar, V.1
Nealon, M.2
-
14
-
-
23744457391
-
A dual conditions for the convex subdifferential sum formula with applications
-
2
-
Burachik, R.S., Jeyakumar, V.: A dual conditions for the convex subdifferential sum formula with applications. J. Convex Anal. 12(2), 229-233 (2005)
-
(2005)
J. Convex Anal.
, vol.12
, pp. 229-233
-
-
Burachik, R.S.1
Jeyakumar, V.2
-
15
-
-
0030587347
-
Inequality systems and global optimization
-
Jeyakumar, V., Rubinov, A.M., Glover, B.M., Ishizuka, Y.: Inequality systems and global optimization. J. Math. Anal. Appl. 202, 900-919 (1996)
-
(1996)
J. Math. Anal. Appl.
, vol.202
, pp. 900-919
-
-
Jeyakumar, V.1
Rubinov, A.M.2
Glover, B.M.3
Ishizuka, Y.4
-
16
-
-
30944465215
-
An alternative formulation for a new closed cone constraint qualification
-
Bot, R.I., Wanka, G.: An alternative formulation for a new closed cone constraint qualification. Nonlinear Anal. 64, 1367-1381 (2006)
-
(2006)
Nonlinear Anal.
, vol.64
, pp. 1367-1381
-
-
Bot, R.I.1
Wanka, G.2
-
17
-
-
34648867053
-
A closed cone constraint qualification for convex optimization
-
University of New South Wales, Sydney, Australia
-
Jeyakumar, V., Lee, G.M., Dinh, N.: A closed cone constraint qualification for convex optimization. Applied Mathematics Research Report AMR04/8, University of New South Wales, Sydney, Australia (2004)
-
(2004)
Applied Mathematics Research Report
-
-
Jeyakumar, V.1
Lee, G.M.2
Dinh, N.3
|