-
1
-
-
0013468395
-
Duality for the sum of convex functions in general Banach spaces
-
J. A. Barroso (ed.), North Holland, Amsterdam
-
H. Attouch, H. Brézis: Duality for the sum of convex functions in general Banach spaces, in: Aspects of Mathematics and its Applications, J. A. Barroso (ed.), North Holland, Amsterdam (1986) 125-133.
-
(1986)
Aspects of Mathematics and Its Applications
, pp. 125-133
-
-
Attouch, H.1
Brézis, H.2
-
2
-
-
0347211614
-
A general duality principle for the sum of two operators
-
H. Attouch, M. Théra: A general duality principle for the sum of two operators, J. Convex Analysis 3(1) (1996) 1-24.
-
(1996)
J. Convex Analysis
, vol.3
, Issue.1
, pp. 1-24
-
-
Attouch, H.1
Théra, M.2
-
3
-
-
0001030731
-
Strong conical hull intersection property, bounded linear regularity, Jameson's property (G), and error bounds in convex optimization
-
H. H. Bauschke, J. M. Borwein, W. Li: Strong conical hull intersection property, bounded linear regularity, Jameson's property (G), and error bounds in convex optimization, Math. Progr. 86 (1999) 135-160.
-
(1999)
Math. Progr.
, vol.86
, pp. 135-160
-
-
Bauschke, H.H.1
Borwein, J.M.2
Li, W.3
-
4
-
-
85174220840
-
Bounded linear regularity, strong CHIP, and CHIP are distinct properties
-
H. H. Bauschke, J. M. Borwein, P. Tseng: Bounded linear regularity, strong CHIP, and CHIP are distinct properties, J. Convex Analysis 7(2) (2000) 395-412.
-
(2000)
J. Convex Analysis
, vol.7
, Issue.2
, pp. 395-412
-
-
Bauschke, H.H.1
Borwein, J.M.2
Tseng, P.3
-
5
-
-
32044450566
-
A simple closure condition for the normal cone intersection formula
-
Applied Mathematics Preprint, University of New South Wales, Sydney, Australia. To appear in
-
R. S. Burachik, V. Jeyakumar: A simple closure condition for the normal cone intersection formula, Applied Mathematics Preprint, University of New South Wales, Sydney, Australia. To appear in Proc. Amer. Math. Soc.
-
Proc. Amer. Math. Soc.
-
-
Burachik, R.S.1
Jeyakumar, V.2
-
7
-
-
84980158831
-
Hamiltonian trajectories having prescribed minimal period
-
F. Clarke, I. Ekeland: Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math. 33(2) (1980) 103-116.
-
(1980)
Comm. Pure Appl. Math.
, vol.33
, Issue.2
, pp. 103-116
-
-
Clarke, F.1
Ekeland, I.2
-
8
-
-
0013502738
-
The role of conical hull intersection property in convex optimization and approximation
-
C.K. Chui, L.L. Schumaker (eds.), Vanderbilt University Press, Nashville
-
F. Deutsch: The role of conical hull intersection property in convex optimization and approximation, in: Approximation Theory IX, C.K. Chui, L.L. Schumaker (eds.), Vanderbilt University Press, Nashville (1998).
-
(1998)
Approximation Theory IX
-
-
Deutsch, F.1
-
9
-
-
0033245917
-
Fenchel duality and the strong conical hull intersection property
-
F. Deutsch, W. Li, J. Swetits: Fenchel duality and the strong conical hull intersection property, J. Optim. Theory Appl. 102 (1999) 681-695.
-
(1999)
J. Optim. Theory Appl.
, vol.102
, pp. 681-695
-
-
Deutsch, F.1
Li, W.2
Swetits, J.3
-
11
-
-
0000202885
-
Subdifferential calculus using ε-subdifferentials
-
J.-B. Hiriart-Urruty, R. R. Phelps: Subdifferential calculus using ε-subdifferentials, J. Funct. Anal. 118 (1993) 154-166.
-
(1993)
J. Funct. Anal.
, vol.118
, pp. 154-166
-
-
Hiriart-Urruty, J.-B.1
Phelps, R.R.2
-
12
-
-
0025533626
-
Duality and infinite dimensional optimization
-
V. Jeyakumar: Duality and infinite dimensional optimization, Nonlinear Anal. 15 (1990) 1111-1122.
-
(1990)
Nonlinear Anal.
, vol.15
, pp. 1111-1122
-
-
Jeyakumar, V.1
-
13
-
-
2442552101
-
New sequential Lagrange multiplier conditions characterizing optimality without constraint qualifications for convex programs
-
V. Jeyakumar, G. M. Lee, N. Dinh: New sequential Lagrange multiplier conditions characterizing optimality without constraint qualifications for convex programs, SIAM J. Optim. 14(2) (2003) 534-547.
-
(2003)
SIAM J. Optim.
, vol.14
, Issue.2
, pp. 534-547
-
-
Jeyakumar, V.1
Lee, G.M.2
Dinh, N.3
-
14
-
-
34648867053
-
A new closed cone constraint qualification for convex optimization
-
University of New South Wales, submitted for publication
-
V. Jeyakumar, G. M. Lee, N. Dinh: A new closed cone constraint qualification for convex optimization, Applied Mathematics Research Report AMR04/6, University of New South Wales, submitted for publication.
-
Applied Mathematics Research Report
, vol.AMR04-6
-
-
Jeyakumar, V.1
Lee, G.M.2
Dinh, N.3
-
15
-
-
0030587347
-
Inequality systems and global optimization
-
V. Jeyakumar, A.M. Rubinov, B.M. Glover, Y. Ishizuka: Inequality systems and global optimization, J. Math. Anal. Appl. 202 (1996) 900-919.
-
(1996)
J. Math. Anal. Appl.
, vol.202
, pp. 900-919
-
-
Jeyakumar, V.1
Rubinov, A.M.2
Glover, B.M.3
Ishizuka, Y.4
-
16
-
-
0026867587
-
Generalizations of Slater's constraint qualification for infinite convex programs
-
V. Jeyakumar, H. Wolkowicz: Generalizations of Slater's constraint qualification for infinite convex programs, Math. Progr. 57(1) (1992) 85-102.
-
(1992)
Math. Progr.
, vol.57
, Issue.1
, pp. 85-102
-
-
Jeyakumar, V.1
Wolkowicz, H.2
-
17
-
-
0037289378
-
Nonlinearly constrained best approximation in Hilbert spaces: The strong CHIP, and the basic constraint qualification
-
C. Li, X. Jin: Nonlinearly constrained best approximation in Hilbert spaces: The strong CHIP, and the basic constraint qualification, SIAM J. Optim. 13(1) (2002) 228-239.
-
(2002)
SIAM J. Optim.
, vol.13
, Issue.1
, pp. 228-239
-
-
Li, C.1
Jin, X.2
-
18
-
-
0242365790
-
Fenchel duality in infinite-dimensional setting and its applications
-
K.F. Ng, W. Song: Fenchel duality in infinite-dimensional setting and its applications, Nonlinear Anal. 25 (2003) 845-858.
-
(2003)
Nonlinear Anal.
, vol.25
, pp. 845-858
-
-
Ng, K.F.1
Song, W.2
-
19
-
-
0009618074
-
The operation of infimal convolution
-
T. Strömberg: The operation of infimal convolution, Diss. Math. 352 (1996) 1-61.
-
(1996)
Diss. Math.
, vol.352
, pp. 1-61
-
-
Strömberg, T.1
-
20
-
-
0031189752
-
Sequential convex subdifferential calculus and sequential Lagrange multipliers
-
L. Thibault: Sequential convex subdifferential calculus and sequential Lagrange multipliers, SIAM J. Control Optim. 35(4) (1997) 1434-1444.
-
(1997)
SIAM J. Control Optim.
, vol.35
, Issue.4
, pp. 1434-1444
-
-
Thibault, L.1
-
21
-
-
0012696316
-
A generalized sequential formula for subdifferentials of sums of convex functions defined on Banach spaces
-
Recent Developments in Optimization (Dijon, 1994), Springer, Berlin
-
L. Thibault: A generalized sequential formula for subdifferentials of sums of convex functions defined on Banach spaces, in: Recent Developments in Optimization (Dijon, 1994), Lecture Notes in Econom. and Math. Systems 429, Springer, Berlin (1995) 340-345.
-
(1995)
Lecture Notes in Econom. and Math. Systems
, vol.429
, pp. 340-345
-
-
Thibault, L.1
|