메뉴 건너뛰기




Volumn 2, Issue 1, 2008, Pages 15-25

A note on strong duality in convex semidefinite optimization: Necessary and sufficient conditions

Author keywords

Constraint qualifications; Convex programming; Semidefinite optimization; Strong duality

Indexed keywords

APPROXIMATION THEORY; COMPUTER SIMULATION; CONSTRAINT THEORY; ERROR ANALYSIS; LAGRANGE MULTIPLIERS; PROBLEM SOLVING;

EID: 35448976508     PISSN: 18624472     EISSN: 18624480     Source Type: Journal    
DOI: 10.1007/s11590-006-0038-x     Document Type: Article
Times cited : (18)

References (23)
  • 1
    • 0037248880 scopus 로고    scopus 로고
    • Semidefinite programming duality and linear time-invariant systems
    • Balakrishnan V. and Vandenberghe L. (2003). Semidefinite programming duality and linear time-invariant systems. IEEE Trans. Autom. Control 48: 30-41
    • (2003) IEEE Trans. Autom. Control , vol.48 , pp. 30-41
    • Balakrishnan, V.1    Vandenberghe, L.2
  • 2
    • 0026867929 scopus 로고
    • Partially finite convex programming, part I: Quasi relative interiors and duality theory
    • Borwein J.M. and Lewis A.S. (1992). Partially finite convex programming, part I: Quasi relative interiors and duality theory. Math. Progr. 57: 15-48
    • (1992) Math. Progr. , vol.57 , pp. 15-48
    • Borwein, J.M.1    Lewis, A.S.2
  • 3
    • 0003004622 scopus 로고
    • Linear matrix inequalities in systems and control theory
    • SIAM, Philadelphia
    • Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear matrix inequalities in systems and control theory. In: SIAM Stud. Appl. Math., vol. 15. SIAM, Philadelphia (1994)
    • (1994) SIAM Stud. Appl. Math. , vol.15
    • Boyd, S.1    El Ghaoui, L.2    Feron, E.3    Balakrishnan, V.4
  • 5
    • 20144382882 scopus 로고    scopus 로고
    • A simple closure condition for the normal cone intersection formula
    • Burachik R.S. and Jeyakumar V. (2005). A simple closure condition for the normal cone intersection formula. Proc. Am. Math. Soc. 133: 1741-1748
    • (2005) Proc. Am. Math. Soc. , vol.133 , pp. 1741-1748
    • Burachik, R.S.1    Jeyakumar, V.2
  • 6
    • 27244447811 scopus 로고    scopus 로고
    • A new geometric condition for Fenchel's duality in infinite dimensional spaces
    • Burachik R.S. and Jeyakumar V. (2005). A new geometric condition for Fenchel's duality in infinite dimensional spaces. Math. Program. Ser. B 104: 229-233
    • (2005) Math. Program. Ser. B , vol.104 , pp. 229-233
    • Burachik, R.S.1    Jeyakumar, V.2
  • 7
    • 33644528747 scopus 로고    scopus 로고
    • Necessary and sufficient conditions for stable conjugate duality
    • Burachik R.S., Jeyakumar V. and Wu Z.Y. (2006). Necessary and sufficient conditions for stable conjugate duality. Nonlin. Anal. 64: 1998-2006
    • (2006) Nonlin. Anal. , vol.64 , pp. 1998-2006
    • Burachik, R.S.1    Jeyakumar, V.2    Wu, Z.Y.3
  • 8
    • 0013502738 scopus 로고    scopus 로고
    • The role of conical hull intersection property in convex optimization and approximation
    • Vanderbilt University Press Nashville
    • Deutsch F. (1998). The role of conical hull intersection property in convex optimization and approximation. In: Chui, C.K. and Schumaker, L.L. (eds) Approximation Theory, vol. IX, pp. Vanderbilt University Press, Nashville
    • (1998) Approximation Theory, Vol. IX
    • Deutsch, F.1    Chui, C.K.2    Schumaker, L.L.3
  • 9
    • 0033245917 scopus 로고    scopus 로고
    • Fenchel duality and the strong conical hull intersection property
    • Deutsch F., Li W. and Swetits J. (1999). Fenchel duality and the strong conical hull intersection property. J. Optim. Theory Appl. 102: 681-695
    • (1999) J. Optim. Theory Appl. , vol.102 , pp. 681-695
    • Deutsch, F.1    Li, W.2    Swetits, J.3
  • 10
    • 0000923543 scopus 로고
    • Generalized Kuhn-Tucker conditions for mathematical programming problems in a Banach space
    • Guignard M. (1969). Generalized Kuhn-Tucker conditions for mathematical programming problems in a Banach space. SIAM J. Control 7: 232-241
    • (1969) SIAM J. Control , vol.7 , pp. 232-241
    • Guignard, M.1
  • 11
    • 0037117180 scopus 로고    scopus 로고
    • Semidefinite programming
    • Helmberg C. (2002). Semidefinite programming. Eur. J. Oper. Res. 137: 461-482
    • (2002) Eur. J. Oper. Res. , vol.137 , pp. 461-482
    • Helmberg, C.1
  • 13
    • 29144527037 scopus 로고    scopus 로고
    • The strong conical hull intersection property for convex programming
    • Jeyakumar V. (2006). The strong conical hull intersection property for convex programming. Math. Progr. Ser. A 106: 81-92
    • (2006) Math. Progr. Ser. A , vol.106 , pp. 81-92
    • Jeyakumar, V.1
  • 14
    • 2442590119 scopus 로고    scopus 로고
    • Complete characterizations of optimality for convex semidefinite programming
    • Jeyakumar V. and Nealon M. (2000). Complete characterizations of optimality for convex semidefinite programming. Can. Math. Soc. Conf. Proc 27: 165-173
    • (2000) Can. Math. Soc. Conf. Proc , vol.27 , pp. 165-173
    • Jeyakumar, V.1    Nealon, M.2
  • 15
    • 0026867587 scopus 로고
    • Generalizations of Slater's constraint qualification for infinite convex programs
    • Jeyakumar V. and Wolkowicz H. (1992). Generalizations of Slater's constraint qualification for infinite convex programs. Math. Progr. 57: 85-102
    • (1992) Math. Progr. , vol.57 , pp. 85-102
    • Jeyakumar, V.1    Wolkowicz, H.2
  • 16
    • 2442552101 scopus 로고    scopus 로고
    • New sequential Lagrange multiplier conditions characterizing optimality without constraint qualification for convex programs
    • Jeyakumar V., Lee G.M. and Dinh N. (2003). New sequential Lagrange multiplier conditions characterizing optimality without constraint qualification for convex programs. SIAM J. Optim. 14: 534-547
    • (2003) SIAM J. Optim. , vol.14 , pp. 534-547
    • Jeyakumar, V.1    Lee, G.M.2    Dinh, N.3
  • 17
    • 1842582436 scopus 로고    scopus 로고
    • Investigating duality on stability conditions
    • De Oliveira M.C. (2004). Investigating duality on stability conditions. Syst. Control Lett. 52: 1-6
    • (2004) Syst. Control Lett. , vol.52 , pp. 1-6
    • De Oliveira, M.C.1
  • 18
    • 0031146175 scopus 로고    scopus 로고
    • An exact duality theory for semidefinite programming and its complexity implications
    • Ramana M.V. (1997). An exact duality theory for semidefinite programming and its complexity implications. Math. Progr. 77: 129-162
    • (1997) Math. Progr. , vol.77 , pp. 129-162
    • Ramana, M.V.1
  • 19
    • 0031285890 scopus 로고    scopus 로고
    • Strong duality for semidefinite programming
    • Ramana M.V., Tunçcel L. and Wolkowicz H. (1997). Strong duality for semidefinite programming. SIAM J. Optim. 7: 644-662
    • (1997) SIAM J. Optim. , vol.7 , pp. 644-662
    • Ramana, M.V.1    Tunçcel, L.2    Wolkowicz, H.3
  • 20
    • 13444260720 scopus 로고    scopus 로고
    • On duality theory of conic linear problems, semi-infinite programming (Alicante, 1999)
    • Kluwer, Dordrecht
    • Shapiro, A.: On duality theory of conic linear problems, semi-infinite programming (Alicante, 1999). In: Nonconvex Optim. Appl. vol. 57, pp. 135-165. Kluwer, Dordrecht (2001)
    • (2001) Nonconvex Optim. Appl. , vol.57 , pp. 135-165
    • Shapiro, A.1
  • 21
    • 0000920501 scopus 로고    scopus 로고
    • Semidefinite optimization
    • Todd M.J. (2001). Semidefinite optimization. Acta Numer. 10: 515-560
    • (2001) Acta Numer. , vol.10 , pp. 515-560
    • Todd, M.J.1
  • 22
    • 0030106462 scopus 로고    scopus 로고
    • Semidefinite programming
    • Vandenberghe L. and Boyd S. (1996). Semidefinite programming. SIAM Rev. 38: 49-95
    • (1996) SIAM Rev. , vol.38 , pp. 49-95
    • Vandenberghe, L.1    Boyd, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.