메뉴 건너뛰기




Volumn 1, Issue , 2007, Pages 620-627

Optimized local kernel machines for fast time series forecasting

Author keywords

[No Author keywords available]

Indexed keywords

ERROR ANALYSIS; LEARNING ALGORITHMS; ONLINE SYSTEMS; SUPPORT VECTOR MACHINES; TIME SERIES ANALYSIS;

EID: 38049024128     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICNC.2007.528     Document Type: Conference Paper
Times cited : (7)

References (27)
  • 1
    • 0036530235 scopus 로고    scopus 로고
    • The Equivalebce of Support Vector Machines and Regularization Neural Networks
    • P. AndrÁs, The Equivalebce of Support Vector Machines and Regularization Neural Networks, Neural Processing Letters, 65 (2002) 97-104.
    • (2002) Neural Processing Letters , vol.65 , pp. 97-104
    • AndrÁs, P.1
  • 2
    • 0034861805 scopus 로고    scopus 로고
    • Kernel-based Methods and Function Approximation
    • Washington, DC
    • G.Baudat, R Anouar, Kernel-based Methods and Function Approximation, Proceedings of IJCNN, Washington, DC, 2001, pp. 32-38.
    • (2001) Proceedings of IJCNN , pp. 32-38
    • Baudat, G.1    Anouar, R.2
  • 3
    • 38049069384 scopus 로고    scopus 로고
    • G.Bontempi, M. Birattari, H. Bersini, Local learning for iterated time series prediction, Machine Learning: Proceedings of 6th International Conference, San Francisco, 1999, pp. 32-38.
    • G.Bontempi, M. Birattari, H. Bersini, Local learning for iterated time series prediction, Machine Learning: Proceedings of 6th International Conference, San Francisco, 1999, pp. 32-38.
  • 5
    • 17444398555 scopus 로고    scopus 로고
    • Leave-one-out Bounds for Support Vector Regression Model Selection
    • M.-W. Chang, C.-J. Lin, Leave-one-out Bounds for Support Vector Regression Model Selection, Neural Computation, 17 (2005) 1188-1222.
    • (2005) Neural Computation , vol.17 , pp. 1188-1222
    • Chang, M.-W.1    Lin, C.-J.2
  • 10
    • 38049054923 scopus 로고    scopus 로고
    • R. Fernández, Predicting time series with a local support vector regression machine. Advanced Course on Artificial Intelligence (ACAI'99), 1999, Available at: http://www.iit.demokritos,gr/skel/eetn/acai99/
    • R. Fernández, Predicting time series with a local support vector regression machine. Advanced Course on Artificial Intelligence (ACAI'99), 1999, Available at: http://www.iit.demokritos,gr/skel/eetn/acai99/
  • 11
    • 38049023201 scopus 로고    scopus 로고
    • Available at
    • Steve Gunn, MATLAB SVR Toolbox, Available at http://www.isis.ecs.soton. ac.uk/resources/svminfo/
    • Steve Gunn, MATLAB SVR Toolbox
  • 13
    • 38049023672 scopus 로고    scopus 로고
    • Model optimizing and feature selecting for support vector regression in time series forecasting
    • Submitted
    • W. He, Z. Wang, Model optimizing and feature selecting for support vector regression in time series forecasting, Submitted.
    • He, W.1    Wang, Z.2
  • 14
    • 33749605642 scopus 로고    scopus 로고
    • Dynamically Optimizing Parameters in Support Vector Regression: An Application of Electricity Load Forecasting
    • Hawaii
    • C. Hu, C. Wu, S. Chen, K. Peng, Dynamically Optimizing Parameters in Support Vector Regression: An Application of Electricity Load Forecasting, Proceedings of the 39th International Conference on System Sciences, Hawaii, Vol.2, 2006, pp. 30c-30c.
    • (2006) Proceedings of the 39th International Conference on System Sciences , vol.2
    • Hu, C.1    Wu, C.2    Chen, S.3    Peng, K.4
  • 15
    • 0242351905 scopus 로고    scopus 로고
    • Financial time series forecsating using support vector machines
    • K. Kim, Financial time series forecsating using support vector machines, Neurocomputing 55 (2003) 307-319.
    • (2003) Neurocomputing , vol.55 , pp. 307-319
    • Kim, K.1
  • 16
    • 85119552645 scopus 로고    scopus 로고
    • R.M. Lewis, V. Torczon, M.W. Trosset, Direct search methods: then and now, Journal of Computational and Applied Mathematics, 124 (2000) 191-207.
    • R.M. Lewis, V. Torczon, M.W. Trosset, Direct search methods: then and now, Journal of Computational and Applied Mathematics, 124 (2000) 191-207.
  • 17
    • 0141765796 scopus 로고    scopus 로고
    • Acuurate On-line Support Regression
    • J, Ma, J. Theiler, S. Perkins, Acuurate On-line Support Regression, Neural Computation, 15 (2003) 2683-2703.
    • (2003) Neural Computation , vol.15 , pp. 2683-2703
    • Ma, J.1    Theiler, J.2    Perkins, S.3
  • 18
    • 38049069933 scopus 로고    scopus 로고
    • J. McNames, Local Modeling Optimization for Time Series Prediction, Proceedings of European Symposium on Artificial Neural Networks, 2000, Bruges, pp. 305-310.
    • J. McNames, Local Modeling Optimization for Time Series Prediction, Proceedings of European Symposium on Artificial Neural Networks, 2000, Bruges, pp. 305-310.
  • 19
    • 38049092181 scopus 로고    scopus 로고
    • M. Momma, K.P. Bennett, A Pattern Search Method f or Model Selection of Support Vector Regression, Proceedings of the Second SIAM Internatinal Conference on Data Mining, 2002, Available at: http://www.siam,org/meetings/ sdm02/
    • M. Momma, K.P. Bennett, A Pattern Search Method f or Model Selection of Support Vector Regression, Proceedings of the Second SIAM Internatinal Conference on Data Mining, 2002, Available at: http://www.siam,org/meetings/ sdm02/
  • 20
    • 84956628443 scopus 로고    scopus 로고
    • K.R. Müller, A.J. Smola, B.Schölkopf, Predicting time series with support vector machines, Proceedings of International Conference on Artificisal Neural Networks, 1997, Lausanne, Switzerland, pp. 999-1004.
    • K.R. Müller, A.J. Smola, B.Schölkopf, Predicting time series with support vector machines, Proceedings of International Conference on Artificisal Neural Networks, 1997, Lausanne, Switzerland, pp. 999-1004.
  • 21
    • 18144394762 scopus 로고    scopus 로고
    • Forecsting regional electricity load based on recurrent support vector machines with genetic algorithms
    • P.F. pai, W.C. Hong, Forecsting regional electricity load based on recurrent support vector machines with genetic algorithms, Electric Power Systems Research 74 (2005) 417-425.
    • (2005) Electric Power Systems Research , vol.74 , pp. 417-425
    • pai, P.F.1    Hong, W.C.2
  • 23
    • 84958962423 scopus 로고    scopus 로고
    • Incremental Support Vector Machine Learning: A Local Approach
    • L. Ralaivola, Florence d'Alché-Buc, Incremental Support Vector Machine Learning: A Local Approach, Lecture Notes In Computer Science: Proceedings of the International Conference on Artificial Neural Networks, Vol. 2130, 2001, pp. 322-330.
    • (2001) Lecture Notes In Computer Science , vol.2130 , pp. 322-330
    • Ralaivola, L.1    d'Alché-Buc, F.2
  • 27
    • 84880171586 scopus 로고    scopus 로고
    • A leave-one-out cross validation bound for kernel methods with application in learning
    • T. Zhang, A leave-one-out cross validation bound for kernel methods with application in learning, In 14th Annual Conference on Computation Learning theory, 2001, pp. 427-443.
    • (2001) 14th Annual Conference on Computation Learning theory , pp. 427-443
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.