-
1
-
-
0036530235
-
The Equivalebce of Support Vector Machines and Regularization Neural Networks
-
P. AndrÁs, The Equivalebce of Support Vector Machines and Regularization Neural Networks, Neural Processing Letters, 65 (2002) 97-104.
-
(2002)
Neural Processing Letters
, vol.65
, pp. 97-104
-
-
AndrÁs, P.1
-
2
-
-
0034861805
-
Kernel-based Methods and Function Approximation
-
Washington, DC
-
G.Baudat, R Anouar, Kernel-based Methods and Function Approximation, Proceedings of IJCNN, Washington, DC, 2001, pp. 32-38.
-
(2001)
Proceedings of IJCNN
, pp. 32-38
-
-
Baudat, G.1
Anouar, R.2
-
3
-
-
38049069384
-
-
G.Bontempi, M. Birattari, H. Bersini, Local learning for iterated time series prediction, Machine Learning: Proceedings of 6th International Conference, San Francisco, 1999, pp. 32-38.
-
G.Bontempi, M. Birattari, H. Bersini, Local learning for iterated time series prediction, Machine Learning: Proceedings of 6th International Conference, San Francisco, 1999, pp. 32-38.
-
-
-
-
5
-
-
17444398555
-
Leave-one-out Bounds for Support Vector Regression Model Selection
-
M.-W. Chang, C.-J. Lin, Leave-one-out Bounds for Support Vector Regression Model Selection, Neural Computation, 17 (2005) 1188-1222.
-
(2005)
Neural Computation
, vol.17
, pp. 1188-1222
-
-
Chang, M.-W.1
Lin, C.-J.2
-
6
-
-
0036161011
-
Choosing Multiple Parameters for Support Vector Machines
-
O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee, Choosing Multiple Parameters for Support Vector Machines, Machine Learning, 46 (2002) 131-159.
-
(2002)
Machine Learning
, vol.46
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
9
-
-
0034419669
-
Regularizaron Network and Support Vector Machines
-
T. Evgeniou, M. Pontil, T. Poggio, Regularizaron Network and Support Vector Machines, Advanced in Computatonal Mathematics, 13 (2000) 1-50.
-
(2000)
Advanced in Computatonal Mathematics
, vol.13
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
10
-
-
38049054923
-
-
R. Fernández, Predicting time series with a local support vector regression machine. Advanced Course on Artificial Intelligence (ACAI'99), 1999, Available at: http://www.iit.demokritos,gr/skel/eetn/acai99/
-
R. Fernández, Predicting time series with a local support vector regression machine. Advanced Course on Artificial Intelligence (ACAI'99), 1999, Available at: http://www.iit.demokritos,gr/skel/eetn/acai99/
-
-
-
-
11
-
-
38049023201
-
-
Available at
-
Steve Gunn, MATLAB SVR Toolbox, Available at http://www.isis.ecs.soton. ac.uk/resources/svminfo/
-
Steve Gunn, MATLAB SVR Toolbox
-
-
-
12
-
-
8844240865
-
-
Springer, Berlin
-
W. Härdle, M. Müller, S. Sperlich, A. Werwatz, Nonparametric and Semiparametric Models, Springer, Berlin, 2004.
-
(2004)
Nonparametric and Semiparametric Models
-
-
Härdle, W.1
Müller, M.2
Sperlich, S.3
Werwatz, A.4
-
13
-
-
38049023672
-
Model optimizing and feature selecting for support vector regression in time series forecasting
-
Submitted
-
W. He, Z. Wang, Model optimizing and feature selecting for support vector regression in time series forecasting, Submitted.
-
-
-
He, W.1
Wang, Z.2
-
14
-
-
33749605642
-
Dynamically Optimizing Parameters in Support Vector Regression: An Application of Electricity Load Forecasting
-
Hawaii
-
C. Hu, C. Wu, S. Chen, K. Peng, Dynamically Optimizing Parameters in Support Vector Regression: An Application of Electricity Load Forecasting, Proceedings of the 39th International Conference on System Sciences, Hawaii, Vol.2, 2006, pp. 30c-30c.
-
(2006)
Proceedings of the 39th International Conference on System Sciences
, vol.2
-
-
Hu, C.1
Wu, C.2
Chen, S.3
Peng, K.4
-
15
-
-
0242351905
-
Financial time series forecsating using support vector machines
-
K. Kim, Financial time series forecsating using support vector machines, Neurocomputing 55 (2003) 307-319.
-
(2003)
Neurocomputing
, vol.55
, pp. 307-319
-
-
Kim, K.1
-
16
-
-
85119552645
-
-
R.M. Lewis, V. Torczon, M.W. Trosset, Direct search methods: then and now, Journal of Computational and Applied Mathematics, 124 (2000) 191-207.
-
R.M. Lewis, V. Torczon, M.W. Trosset, Direct search methods: then and now, Journal of Computational and Applied Mathematics, 124 (2000) 191-207.
-
-
-
-
17
-
-
0141765796
-
Acuurate On-line Support Regression
-
J, Ma, J. Theiler, S. Perkins, Acuurate On-line Support Regression, Neural Computation, 15 (2003) 2683-2703.
-
(2003)
Neural Computation
, vol.15
, pp. 2683-2703
-
-
Ma, J.1
Theiler, J.2
Perkins, S.3
-
18
-
-
38049069933
-
-
J. McNames, Local Modeling Optimization for Time Series Prediction, Proceedings of European Symposium on Artificial Neural Networks, 2000, Bruges, pp. 305-310.
-
J. McNames, Local Modeling Optimization for Time Series Prediction, Proceedings of European Symposium on Artificial Neural Networks, 2000, Bruges, pp. 305-310.
-
-
-
-
19
-
-
38049092181
-
-
M. Momma, K.P. Bennett, A Pattern Search Method f or Model Selection of Support Vector Regression, Proceedings of the Second SIAM Internatinal Conference on Data Mining, 2002, Available at: http://www.siam,org/meetings/ sdm02/
-
M. Momma, K.P. Bennett, A Pattern Search Method f or Model Selection of Support Vector Regression, Proceedings of the Second SIAM Internatinal Conference on Data Mining, 2002, Available at: http://www.siam,org/meetings/ sdm02/
-
-
-
-
20
-
-
84956628443
-
-
K.R. Müller, A.J. Smola, B.Schölkopf, Predicting time series with support vector machines, Proceedings of International Conference on Artificisal Neural Networks, 1997, Lausanne, Switzerland, pp. 999-1004.
-
K.R. Müller, A.J. Smola, B.Schölkopf, Predicting time series with support vector machines, Proceedings of International Conference on Artificisal Neural Networks, 1997, Lausanne, Switzerland, pp. 999-1004.
-
-
-
-
21
-
-
18144394762
-
Forecsting regional electricity load based on recurrent support vector machines with genetic algorithms
-
P.F. pai, W.C. Hong, Forecsting regional electricity load based on recurrent support vector machines with genetic algorithms, Electric Power Systems Research 74 (2005) 417-425.
-
(2005)
Electric Power Systems Research
, vol.74
, pp. 417-425
-
-
pai, P.F.1
Hong, W.C.2
-
22
-
-
32444448400
-
-
Washington, pp
-
J.L. Payne, M.J. Eppstein, A Hybrid Genetic Algorithm with Pattern Search for Finding Heavy Atoms in Protein Crystals, GECCO'05, 2005, Washington, pp. 377-384.
-
(2005)
A Hybrid Genetic Algorithm with Pattern Search for Finding Heavy Atoms in Protein Crystals, GECCO'05
, pp. 377-384
-
-
Payne, J.L.1
Eppstein, M.J.2
-
23
-
-
84958962423
-
Incremental Support Vector Machine Learning: A Local Approach
-
L. Ralaivola, Florence d'Alché-Buc, Incremental Support Vector Machine Learning: A Local Approach, Lecture Notes In Computer Science: Proceedings of the International Conference on Artificial Neural Networks, Vol. 2130, 2001, pp. 322-330.
-
(2001)
Lecture Notes In Computer Science
, vol.2130
, pp. 322-330
-
-
Ralaivola, L.1
d'Alché-Buc, F.2
-
27
-
-
84880171586
-
A leave-one-out cross validation bound for kernel methods with application in learning
-
T. Zhang, A leave-one-out cross validation bound for kernel methods with application in learning, In 14th Annual Conference on Computation Learning theory, 2001, pp. 427-443.
-
(2001)
14th Annual Conference on Computation Learning theory
, pp. 427-443
-
-
Zhang, T.1
|