메뉴 건너뛰기




Volumn 94, Issue 4, 2007, Pages 905-919

Using hierarchical likelihood for missing data problems

Author keywords

Adjusted profile likelihood; Hierarchical likelihood; Marginal likelihood; Missing data; Restricted likelihood

Indexed keywords


EID: 37548999814     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asm063     Document Type: Article
Times cited : (15)

References (26)
  • 3
    • 0002738159 scopus 로고
    • Parameter orthogonality and approximate conditional inference (with Discussion)
    • COX, D. R. & REID, N. (1987). Parameter orthogonality and approximate conditional inference (with Discussion). J. R. Statist. Soc. B 32, 1-39.
    • (1987) J. R. Statist. Soc. B , vol.32 , pp. 1-39
    • COX, D.R.1    REID, N.2
  • 4
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with Discussion)
    • DEMPSTER, A. P., LAIRD, N. M. & RUBIN, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with Discussion). J. R. Statist. Soc. B 39, 1-38.
    • (1977) J. R. Statist. Soc. B , vol.39 , pp. 1-38
    • DEMPSTER, A.P.1    LAIRD, N.M.2    RUBIN, D.B.3
  • 5
    • 0002241603 scopus 로고    scopus 로고
    • Stochastic EM: Method and application
    • Ed. W. R. Gilks, S. Richardson and D. J. Spiegelhalter, pp, London: Chapman and Hall
    • DIEBOLT, J. & IP, E. H. S. ( 1996). Stochastic EM: method and application. In Markov Chain Monte Carlo in Practice, Ed. W. R. Gilks, S. Richardson and D. J. Spiegelhalter, pp. 259-68. London: Chapman and Hall.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 259-268
    • DIEBOLT, J.1    IP, E.H.S.2
  • 6
    • 4243828610 scopus 로고
    • Informative drop-out in longitudinal analysis (with Discussion)
    • DIGGLE, P. & KENWARD, M. G. (1994). Informative drop-out in longitudinal analysis (with Discussion). Appl. Statist. 43, 49-93.
    • (1994) Appl. Statist , vol.43 , pp. 49-93
    • DIGGLE, P.1    KENWARD, M.G.2
  • 7
    • 37549007778 scopus 로고
    • A practical application of the Patel-Kenward analysis of covariance to data from an anti-depressant trial with drop-outs
    • HEYTING, A., ESSERS, J. G. A. & TOLBOOM, J. T B. M. (1990). A practical application of the Patel-Kenward analysis of covariance to data from an anti-depressant trial with drop-outs. Statist. Appl. 2, 259-307.
    • (1990) Statist. Appl , vol.2 , pp. 259-307
    • HEYTING, A.1    ESSERS, J.G.A.2    TOLBOOM, J.T.B.M.3
  • 8
    • 84947396376 scopus 로고
    • A generalisation of sampling without replacement from a finite population
    • HORVITZ, D. G. & THOMPSON, D. J. (1952). A generalisation of sampling without replacement from a finite population. J. Am. Statist. Assoc. 47, 663-85.
    • (1952) J. Am. Statist. Assoc , vol.47 , pp. 663-685
    • HORVITZ, D.G.1    THOMPSON, D.J.2
  • 10
    • 0032534724 scopus 로고    scopus 로고
    • Selection models for repeated measurements with nonrandom dropout: An illustration of sensitivity
    • KENWARD, M. G. (1998). Selection models for repeated measurements with nonrandom dropout: an illustration of sensitivity. Statist. Med. 17, 2723-32.
    • (1998) Statist. Med , vol.17 , pp. 2723-2732
    • KENWARD, M.G.1
  • 11
    • 33646894101 scopus 로고    scopus 로고
    • Hierarchical likelihood-based wavelet method for denoising signals with missing data
    • KIM, D., LEE, Y. & OH, H. S. (2006). Hierarchical likelihood-based wavelet method for denoising signals with missing data. IEEE Sig. Proces. Lett. 13, 361-4.
    • (2006) IEEE Sig. Proces. Lett , vol.13 , pp. 361-364
    • KIM, D.1    LEE, Y.2    OH, H.S.3
  • 12
    • 0000312997 scopus 로고    scopus 로고
    • Hierarchical generalized linear models (with Discussion)
    • LEE, Y. & NELDER (1996). Hierarchical generalized linear models (with Discussion). J. R Statist. Soc. B 58, 619-78.
    • (1996) J. R Statist. Soc. B , vol.58 , pp. 619-678
    • LEE, Y.1    NELDER2
  • 13
    • 0012342630 scopus 로고    scopus 로고
    • Hierarchical generalized linear models : A synthesis of generalised linear models, random-effect models and structured dispersion
    • LEE, Y. & NELDER, J. A. (2001). Hierarchical generalized linear models : A synthesis of generalised linear models, random-effect models and structured dispersion. Biometrika 88, 987-1006.
    • (2001) Biometrika , vol.88 , pp. 987-1006
    • LEE, Y.1    NELDER, J.A.2
  • 14
    • 31944450737 scopus 로고    scopus 로고
    • Likelihood for random effect models (with Discussion)
    • LEE, Y. & NELDER, J. A. (2005). Likelihood for random effect models (with Discussion). Statist. Oper. Res. Trans. 29, 141-82.
    • (2005) Statist. Oper. Res. Trans , vol.29 , pp. 141-182
    • LEE, Y.1    NELDER, J.A.2
  • 15
    • 33644629431 scopus 로고    scopus 로고
    • Double hierarchical generalized linear models (with Discussion)
    • LEE, Y. & NELDER, J. A. (2006). Double hierarchical generalized linear models (with Discussion). Appl. Statist. 55, 139-85.
    • (2006) Appl. Statist , vol.55 , pp. 139-185
    • LEE, Y.1    NELDER, J.A.2
  • 17
    • 0000088579 scopus 로고
    • On jointly estimating parameters and missing data by maximizing the complete-data likelihood
    • LITTLE, R. J. A. & RUBIN, D. B. (1983). On jointly estimating parameters and missing data by maximizing the complete-data likelihood. Am. Statistician 37, 218-20.
    • (1983) Am. Statistician , vol.37 , pp. 218-220
    • LITTLE, R.J.A.1    RUBIN, D.B.2
  • 19
    • 0031479575 scopus 로고    scopus 로고
    • Maximum, likelihood algorithms for generalized linear mixed models
    • MCCULLOCH, C. E. (1997). Maximum, likelihood algorithms for generalized linear mixed models. J. Am. Statist. Assoc. 92, 162-70.
    • (1997) J. Am. Statist. Assoc , vol.92 , pp. 162-170
    • MCCULLOCH, C.E.1
  • 20
    • 11144345693 scopus 로고
    • A mean score method for missing and auxiliary covariate data in regression models
    • REILLY M. & PEPE, M. S. (1995). A mean score method for missing and auxiliary covariate data in regression models. Biometrika 82, 299-314.
    • (1995) Biometrika , vol.82 , pp. 299-314
    • REILLY, M.1    PEPE, M.S.2
  • 21
    • 84950421496 scopus 로고
    • Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
    • ROBINS, J. M., ROTNITZKY, A. & ZHAO, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J. Am. Statist. Assoc. 90, 106-21.
    • (1995) J. Am. Statist. Assoc , vol.90 , pp. 106-121
    • ROBINS, J.M.1    ROTNITZKY, A.2    ZHAO, L.P.3
  • 22
    • 0017133178 scopus 로고
    • Inference and missing data
    • RUBIN, D. B. (1976). Inference and missing data. Biometrika 63, 581-92.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • RUBIN, D.B.1
  • 24
    • 0030539070 scopus 로고    scopus 로고
    • Multiple imputation after 18+ years
    • RUBIN, D. B. (1996). Multiple imputation after 18+ years. J. Am. Statist. Assoc. 91, 473-89.
    • (1996) J. Am. Statist. Assoc , vol.91 , pp. 473-489
    • RUBIN, D.B.1
  • 25
    • 0000736815 scopus 로고
    • The analysis of replicated, experiments when the field results are incomplete
    • YATES, F. (1933). The analysis of replicated, experiments when the field results are incomplete. Emp. J. Exp. Agric. 1, 129-2.
    • (1933) Emp. J. Exp. Agric , vol.1 , pp. 129-122
    • YATES, F.1
  • 26
    • 33750854914 scopus 로고    scopus 로고
    • Robust estimation in mixed linear models with non-monotone missingness
    • YUN, S. & LEE, Y. (2006). Robust estimation in mixed linear models with non-monotone missingness. Statist. Med. 25, 3877-92.
    • (2006) Statist. Med , vol.25 , pp. 3877-3892
    • YUN, S.1    LEE, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.