메뉴 건너뛰기




Volumn 18, Issue 1, 2008, Pages 87-99

A comparison of methods for the fitting of generalized additive models

Author keywords

Boosting; Generalized additive models; Mixed model approach; Selection of smoothness; Variable selection

Indexed keywords


EID: 37249080703     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-007-9040-0     Document Type: Article
Times cited : (38)

References (30)
  • 2
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • Breiman, L.: Prediction games and arcing algorithms. Neural Comput. 11, 1493-1517 (1999)
    • (1999) Neural Comput. , vol.11 , pp. 1493-1517
    • Breiman, L.1
  • 3
    • 0043245810 scopus 로고    scopus 로고
    • Boosting with the L2 loss: Regression and classification
    • Bühlmann, P., Yu, B.: Boosting with the L2 loss: regression and classification. J. Am. Stat. Assoc. 98, 324-339 (2003)
    • (2003) J. Am. Stat. Assoc. , vol.98 , pp. 324-339
    • Bühlmann, P.1    Yu, B.2
  • 5
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189-1232 (2001)
    • (2001) Ann. Stat. , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 7
    • 3142617128 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization: Discussion of the paper by T. Zhang
    • 1
    • Friedman, J., Hastie, T., Rosset, S., Tibshirani, R., Zhu, J.: Statistical behavior and consistency of classification methods based on convex risk minimization: discussion of the paper by T. Zhang. Ann. Stat. 32(1), 102-107 (2004)
    • (2004) Ann. Stat. , vol.32 , pp. 102-107
    • Friedman, J.1    Hastie, T.2    Rosset, S.3    Tibshirani, R.4    Zhu, J.5
  • 9
    • 33745886270 scopus 로고    scopus 로고
    • Classifier technology and the illusion of progress
    • 1
    • Hand, D.J.: Classifier technology and the illusion of progress. Stat. Sci. 21(1), 1-14 (2006)
    • (2006) Stat. Sci. , vol.21 , pp. 1-14
    • Hand, D.J.1
  • 10
    • 84972488102 scopus 로고
    • Generalized additive models
    • Hastie, T., Tibshirani, R.: Generalized additive models. Stat. Sci. 1, 295-318 (1986)
    • (1986) Stat. Sci. , vol.1 , pp. 295-318
    • Hastie, T.1    Tibshirani, R.2
  • 12
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • 1
    • Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55-67 (1970)
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 13
    • 0001354983 scopus 로고    scopus 로고
    • Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion
    • 2
    • Hurvich, C.M., Simonoff, J.S., Tsai, C.: Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. J. R. Stat. Soc. B 60(2), 271-293 (1998)
    • (1998) J. R. Stat. Soc. B , vol.60 , pp. 271-293
    • Hurvich, C.M.1    Simonoff, J.S.2    Tsai, C.3
  • 14
    • 2442486641 scopus 로고    scopus 로고
    • Smoothing spline Gaussian regression: More scalable computation via efficient approximation
    • 2
    • Kim, Y.-J., Gu, C.: Smoothing spline Gaussian regression: more scalable computation via efficient approximation. J. R. Stat. Soc. B 66(2), 337-356 (2004)
    • (2004) J. R. Stat. Soc. B , vol.66 , pp. 337-356
    • Kim, Y.-J.1    Gu, C.2
  • 15
    • 0037454091 scopus 로고    scopus 로고
    • Smoothing parameter selection for smoothing splines: A simulation study
    • Lee, T.C.M.: Smoothing parameter selection for smoothing splines: a simulation study. Comput. Stat. Data Anal. 42, 139-148 (2003)
    • (2003) Comput. Stat. Data Anal. , vol.42 , pp. 139-148
    • Lee, T.C.M.1
  • 16
    • 0033432395 scopus 로고    scopus 로고
    • Penlized estimation of free-knot splines
    • 2
    • Lindstrom, M.J.: Penlized estimation of free-knot splines. J. Comput. Graph. Stat. 8(2), 333-352 (1999)
    • (1999) J. Comput. Graph. Stat. , vol.8 , pp. 333-352
    • Lindstrom, M.J.1
  • 17
    • 0000346456 scopus 로고    scopus 로고
    • Estimation of additive regression models with known links
    • Linton, O.B., Härdle, W.: Estimation of additive regression models with known links. Biometrika 83, 529-540 (1996)
    • (1996) Biometrika , vol.83 , pp. 529-540
    • Linton, O.B.1    Härdle, W.2
  • 18
    • 0032493547 scopus 로고    scopus 로고
    • Direct generalized additive modelling with penalized likelihood
    • Marx, B.D., Eilers, P.H.C.: Direct generalized additive modelling with penalized likelihood. Comput. Stat. Data Anal. 28, 193-209 (1998)
    • (1998) Comput. Stat. Data Anal. , vol.28 , pp. 193-209
    • Marx, B.D.1    Eilers, P.H.C.2
  • 20
    • 33748324384 scopus 로고    scopus 로고
    • R Development Core Team. R Foundation for Statistical Computing Vienna ISBN 3-900051-07-0
    • R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2006). ISBN 3-900051-07-0
    • (2006) R: A Language and Environment for Statistical Computing
  • 21
    • 0036921633 scopus 로고    scopus 로고
    • Selecting the number of knots for penalized splines
    • Ruppert, D.: Selecting the number of knots for penalized splines. J. Comput. Graph. Stat. 11, 735-757 (2002)
    • (2002) J. Comput. Graph. Stat. , vol.11 , pp. 735-757
    • Ruppert, D.1
  • 23
    • 0041512328 scopus 로고
    • Comment on "that BLUP is a good thing: The estimation of random effects" by G.K. Robinson
    • 1
    • Speed, T.: Comment on "That BLUP is a good thing: the estimation of random effects" by G.K. Robinson. Stat. Sci. 6(1), 42-44 (1991)
    • (1991) Stat. Sci. , vol.6 , pp. 42-44
    • Speed, T.1
  • 24
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • 1
    • Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58(1), 267-288 (1996)
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 25
    • 33845509035 scopus 로고    scopus 로고
    • Generalized additive modelling with implicit variable selection by likelihood based boosting
    • Tutz, G., Binder, H.: Generalized additive modelling with implicit variable selection by likelihood based boosting. Biometrics 62, 961-971 (2006)
    • (2006) Biometrics , vol.62 , pp. 961-971
    • Tutz, G.1    Binder, H.2
  • 26
    • 0034555628 scopus 로고    scopus 로고
    • A comparison of regression spline smoothing procedures
    • Wand, M.P.: A comparison of regression spline smoothing procedures. Comput. Stat. 15, 443-462 (2000)
    • (2000) Comput. Stat. , vol.15 , pp. 443-462
    • Wand, M.P.1
  • 27
    • 0000176720 scopus 로고    scopus 로고
    • Mixed effects smoothing spline analysis of variance
    • 1
    • Wang, Y.: Mixed effects smoothing spline analysis of variance. J. R. Stat. Soc. B 60(1), 159-174 (1998)
    • (1998) J. R. Stat. Soc. B , vol.60 , pp. 159-174
    • Wang, Y.1
  • 28
    • 0034364945 scopus 로고    scopus 로고
    • Modelling and smoothing parameter estimation with multiple quadratic penalties
    • 2
    • Wood, S.N.: Modelling and smoothing parameter estimation with multiple quadratic penalties. J. R. Stat. Soc. B 62(2), 413-428 (2000)
    • (2000) J. R. Stat. Soc. B , vol.62 , pp. 413-428
    • Wood, S.N.1
  • 29
    • 4944226585 scopus 로고    scopus 로고
    • Stable and efficient multiple smoothing parameter estimation for generalized additive models
    • 467
    • Wood, S.N.: Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99(467), 673-686 (2004)
    • (2004) J. Am. Stat. Assoc. , vol.99 , pp. 673-686
    • Wood, S.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.