메뉴 건너뛰기




Volumn , Issue , 2006, Pages 593-600

Learning classifiers for high-dimensional micro-array data

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; FUZZY LOGIC;

EID: 37249066644     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1142/9789812774118_0084     Document Type: Conference Paper
Times cited : (1)

References (16)
  • 2
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • T.R. Golub et al., Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286 (1999).
    • (1999) Science , pp. 286
    • Golub, T.R.1
  • 3
    • 0036161259 scopus 로고    scopus 로고
    • Gene Selection for Cancer Classification using Support Vector Machines
    • I. Guyon, J. Weston, S. Barnhill and V. Vapnik, Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning, 46 (1-3): 389-422 (2002).
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 4
    • 33745179144 scopus 로고    scopus 로고
    • Learning Bayesian Classifiers from Gene-Expression MicroArray Data
    • Springer-Verlag
    • A. Bosin, N. Dessi, D. Liberati and B. Pes, Learning Bayesian Classifiers from Gene-Expression MicroArray Data, Proceedings of WILF 2005, LNAI, vol. 3849, Springer-Verlag (2005).
    • (2005) Proceedings of WILF 2005, LNAI , vol.3849
    • Bosin, A.1    Dessi, N.2    Liberati, D.3    Pes, B.4
  • 5
    • 0032183995 scopus 로고    scopus 로고
    • The minimum description length principle in coding and modelling
    • A. Barron, J. Rissanen and B. Yu, The minimum description length principle in coding and modelling, IEEE Transactions on Information Theory, 44: 2743-2760 (1998).
    • (1998) IEEE Transactions on Information Theory , vol.44 , pp. 2743-2760
    • Barron, A.1    Rissanen, J.2    Yu, B.3
  • 10
    • 85036462012 scopus 로고    scopus 로고
    • http://www.stjuderesearch.org/dataiALLl/.
  • 11
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A. Blum and P. Langley, Selection of relevant features and examples in machine learning, Artificial Intelligence, 97:245-271 (1997).
    • (1997) Artificial Intelligence , vol.97 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 12
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. John, Wrappers for feature subset selection, Artificial Intelligence, 97:273-324 (1997).
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 13
    • 85077432727 scopus 로고
    • On biases in estimating multi-valued attributes
    • I. Kononenko, On biases in estimating multi-valued attributes, IJCAI95, 1034-1040 (1995).
    • (1995) IJCAI95 , pp. 1034-1040
    • Kononenko, I.1
  • 14
    • 0038021028 scopus 로고    scopus 로고
    • A Comparative Study on Feature Selection and Classification Methods Using Gene Expression Profiles and Proteomic Patterns
    • H. Liu, J. Li and L. Wong, A Comparative Study on Feature Selection and Classification Methods Using Gene Expression Profiles and Proteomic Patterns, Genome informatics 13: 51-60 (2002).
    • (2002) Genome Informatics , vol.13 , pp. 51-60
    • Liu, H.1    Li, J.2    Wong, L.3
  • 15
    • 19044399684 scopus 로고    scopus 로고
    • Classification, sub-type discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling
    • E. J. Yeoh et al., Classification, sub-type discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling, Cancer Cell, 1: 133-143 (2002).
    • (2002) Cancer Cell , vol.1 , pp. 133-143
    • Yeoh, E.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.