-
1
-
-
0002696419
-
-
Note that the chemistry literature contains a substantial number of citations with the German spelling Menschutkin, and also the English spelling Menshutkin
-
Menschutkin, N. Z. Phys. Chem. 1890, 6, 41-57. Note that the chemistry literature contains a substantial number of citations with the German spelling Menschutkin, and also the English spelling Menshutkin.
-
(1890)
Z. Phys. Chem
, vol.6
, pp. 41-57
-
-
Menschutkin, N.1
-
2
-
-
0001922356
-
-
Taft, R. W, Ed, Wiley: New York
-
Abboud, J. M.; Notario, R.; Berrán, J.; Sola, M. H. In Progress in Physical Organic Chemistry; Taft, R. W., Ed.; Wiley: New York, 1993; Vol. 19, pp 1-182.
-
(1993)
Progress in Physical Organic Chemistry
, vol.19
, pp. 1-182
-
-
Abboud, J.M.1
Notario, R.2
Berrán, J.3
Sola, M.H.4
-
5
-
-
84986557922
-
-
Streitwieser, A, Taft, R. W, Eds, Wiley: New York
-
Abraham, M. H. In Progress in Physical Organic Chemistry; Streitwieser, A., Taft, R. W., Eds.; Wiley: New York, 1974; Vol. 11, pp 1-87.
-
(1974)
Progress in Physical Organic Chemistry
, vol.11
, pp. 1-87
-
-
Abraham, M.H.1
-
6
-
-
33845558201
-
-
Taft, R. W.; Pienta, N. J.; Kamlet, M. J.; Arnett, E. M. J. Org. Chem. 1981, 46, 661-667.
-
(1981)
J. Org. Chem
, vol.46
, pp. 661-667
-
-
Taft, R.W.1
Pienta, N.J.2
Kamlet, M.J.3
Arnett, E.M.4
-
7
-
-
23844547849
-
-
Purse, B. W.; Gissot, A.; Rebek, J., Jr. J. Am. Chem. Soc. 2005, 127, 11222-11223.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 11222-11223
-
-
Purse, B.W.1
Gissot, A.2
Rebek Jr., J.3
-
11
-
-
0001666522
-
-
McCurdy, A.; Jimenez, L.; Stauffer, D. A.; Dougherty, D. A. J. Am. Chem. Soc. 1992, 114, 10314-10321.
-
(1992)
J. Am. Chem. Soc
, vol.114
, pp. 10314-10321
-
-
McCurdy, A.1
Jimenez, L.2
Stauffer, D.A.3
Dougherty, D.A.4
-
12
-
-
16244393066
-
-
Lee, J.-J.; Stanger, K. J.; Noll, B. C.; Gonzalez, C.; Marquez, M.; Smith, B. D. J. Am. Chem. Soc. 2005, 127, 4184-4185.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 4184-4185
-
-
Lee, J.-J.1
Stanger, K.J.2
Noll, B.C.3
Gonzalez, C.4
Marquez, M.5
Smith, B.D.6
-
13
-
-
36849040401
-
-
For examples of N-alkylation with methylene chloride, see: (a) Nevstad, G. O, Songstad, J. Acta Chem. Scand. B 1984, 38, 469-477
-
For examples of N-alkylation with methylene chloride, see: (a) Nevstad, G. O.; Songstad, J. Acta Chem. Scand. B 1984, 38, 469-477.
-
-
-
-
14
-
-
0002661945
-
-
(b) Mills, J. E.; Maryanoff, C. A.; Cosgrove, R. M.; Scott, L.; McComsey, D. F. Org. Prep. Proced. Int. 1984, 16, 97-114.
-
(1984)
Org. Prep. Proced. Int
, vol.16
, pp. 97-114
-
-
Mills, J.E.1
Maryanoff, C.A.2
Cosgrove, R.M.3
Scott, L.4
McComsey, D.F.5
-
15
-
-
33745450416
-
-
(c) Tal, S.; Salman, H.; Abraham, Y.; Botoshansky, M.; Eichen, Y. Chem. - Eur. J. 2006, 12, 4858-4862.
-
(2006)
Chem. - Eur. J
, vol.12
, pp. 4858-4862
-
-
Tal, S.1
Salman, H.2
Abraham, Y.3
Botoshansky, M.4
Eichen, Y.5
-
16
-
-
33748672289
-
-
(d) Ernst, R. D.; Harvey, B. G.; Oteri, O. J.; Arif, A. M. Z. Kristallogr. 2005, 220, 373-375.
-
(2005)
Z. Kristallogr
, vol.220
, pp. 373-375
-
-
Ernst, R.D.1
Harvey, B.G.2
Oteri, O.J.3
Arif, A.M.4
-
17
-
-
36849012928
-
-
The alkylation products with unsubstituted benzyl halides tended to precipitate very quickly during the reaction; therefore, the more soluble 4-tert-butylbenzyl halides were employed instead
-
The alkylation products with unsubstituted benzyl halides tended to precipitate very quickly during the reaction; therefore, the more soluble 4-tert-butylbenzyl halides were employed instead.
-
-
-
-
18
-
-
36849055955
-
-
N2 process, but with some of the organohalides we cannot rule out the possibility that the mechanism may involve two SET steps.
-
N2 process, but with some of the organohalides we cannot rule out the possibility that the mechanism may involve two SET steps.
-
-
-
-
19
-
-
36849000192
-
-
Another example of selective improvement of leaving-group ability in the order Cl > Br > I is the ratio k(1)/k(2). With 4-t-BuBn halides, the values of k(1)/k(2) are 4-t-BuBnCl (55), 4-t-BuBnBr (6.5), and 4-t-BuBnI (0.15). In other words, 4-t-BuBnCl reacts with macrocycle 1 much faster than with 2, whereas the ratio is reversed with 4-t-BuBnI.
-
Another example of selective improvement of leaving-group ability in the order Cl > Br > I is the ratio k(1)/k(2). With 4-t-BuBn halides, the values of k(1)/k(2) are 4-t-BuBnCl (55), 4-t-BuBnBr (6.5), and 4-t-BuBnI (0.15). In other words, 4-t-BuBnCl reacts with macrocycle 1 much faster than with 2, whereas the ratio is reversed with 4-t-BuBnI.
-
-
-
-
20
-
-
36849078751
-
-
The leaving-group ability of fluoride in SN2 reactions is about 200 times less than that of chloride, McMurry, J. Organic Chemistry; 6th ed, Thomson-Brooks/Cole: Belmont, CA, 2004, The main reason is the high strength of the C-F bond (e.g, bond strengths are CH3-F 108 kcal/mol, CH3-Cl 84 kcal/mol, CH3-Br 70 kcal/mol, and CH3-I 56 kcal/mol, t-BuBnF reacts with macrocycle 1 in CDCl3 with a rate constant of (5.63 ± 0.20) × 10 -5 M-1 s-1 at 298 K. In contrast, no reaction with 2 could be detected at 298 K. To provide a point of comparison, the experiments with t-BuBnF were repeated at 323 K, where k rel(1)/krel(2, 100, which means that the rate enhancement for fluoride leaving group is greater than that for chloride 100- vs 55-fold
-
rel(2) = 100, which means that the rate enhancement for fluoride leaving group is greater than that for chloride (100- vs 55-fold).
-
-
-
-
22
-
-
28544442086
-
-
Prereaction complexes can also be identified using non-steady state kinetic analysis. Parker, V. D. Pure Appl. Chem. 2005, 77, 1823-1833.
-
Prereaction complexes can also be identified using non-steady state kinetic analysis. Parker, V. D. Pure Appl. Chem. 2005, 77, 1823-1833.
-
-
-
-
23
-
-
36849052807
-
-
An X-ray crystal structure of 1 as its DMSO adduct (see the Supporting Information in ref 10) shows that the DMSO oxygen atom forms hydrogen bonds with the two NH residues in the macrocyclic cavity
-
An X-ray crystal structure of 1 as its DMSO adduct (see the Supporting Information in ref 10) shows that the DMSO oxygen atom forms hydrogen bonds with the two NH residues in the macrocyclic cavity.
-
-
-
-
25
-
-
0011083843
-
-
A similar but less dramatic correlation is seen when comparing leaving-group abilities for the Menschutkin reaction in aprotic and protic solvents. For example, moving from aprotic DMF to protic methanol enhances leaving-group ability in the order Cl > Br > I. Parker, A. J. Chem. Rev. 1969, 69, 1-32
-
A similar but less dramatic correlation is seen when comparing leaving-group abilities for the Menschutkin reaction in aprotic and protic solvents. For example, moving from aprotic DMF to protic methanol enhances leaving-group ability in the order Cl > Br > I. Parker, A. J. Chem. Rev. 1969, 69, 1-32.
-
-
-
-
26
-
-
33748584863
-
-
Gao, J.; Ma, S.; Major, D. T.; Nam, K.; Pu, J.; Truhlar, D. G. Chem. Rev. 2006, 106, 3188-3209.
-
(2006)
Chem. Rev
, vol.106
, pp. 3188-3209
-
-
Gao, J.1
Ma, S.2
Major, D.T.3
Nam, K.4
Pu, J.5
Truhlar, D.G.6
-
27
-
-
36849014711
-
-
The transition state of a typical Menschutkin reaction at ambient temperature in moderately polar solvents is characterized by TΔS‡ values of -9 to -11 kcal/mol see ref 2, The highly negative ΔS‡ is attributed to ordering of the solvent cage and a negative of activation, which explains why the reaction is promoted by high pressure
-
The transition state of a typical Menschutkin reaction at ambient temperature in moderately polar solvents is characterized by TΔS‡ values of -9 to -11 kcal/mol (see ref 2). The highly negative ΔS‡ is attributed to ordering of the solvent cage and a negative volume of activation, which explains why the reaction is promoted by high pressure.
-
-
-
-
28
-
-
0037433269
-
-
Activation of a halide leaving group by hydrogen bonding is a strategy that is employed by the family of enzymes known as haloalkane dehydrogenases. The first catalytic step in the enzymatic process involves attack of an organohalide by an active-site carboxylate nucleophile, and a significant fraction of the rate enhancement is attributed to two NH residues in the enzyme active site that form stabilizing hydrogen bonds with the halide leaving group. Dev-Kesavan, L, Gao, J. J. Am. Chem. Soc. 2003, 125, 1532-1540
-
Activation of a halide leaving group by hydrogen bonding is a strategy that is employed by the family of enzymes known as haloalkane dehydrogenases. The first catalytic step in the enzymatic process involves attack of an organohalide by an active-site carboxylate nucleophile, and a significant fraction of the rate enhancement is attributed to two NH residues in the enzyme active site that form stabilizing hydrogen bonds with the halide leaving group. Dev-Kesavan, L.; Gao, J. J. Am. Chem. Soc. 2003, 125, 1532-1540.
-
-
-
-
29
-
-
36849019364
-
-
-1) as determined by NMR dilution experiments.
-
-1) as determined by NMR dilution experiments.
-
-
-
-
30
-
-
0037418209
-
-
For discussions of near attack conformation, see: a
-
For discussions of near attack conformation, see: (a) Hur, S.; Kahn, K.; Bruice, T. C. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 2215-2219.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A
, vol.100
, pp. 2215-2219
-
-
Hur, S.1
Kahn, K.2
Bruice, T.C.3
-
33
-
-
84962450020
-
-
(d) Shurki, A.; Strajbl, M.; Villa, J.; Warshel, A. J. Am. Chem. Soc. 2002, 124, 4097-4107.
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 4097-4107
-
-
Shurki, A.1
Strajbl, M.2
Villa, J.3
Warshel, A.4
-
34
-
-
23244446189
-
-
(e) Zhang, X.; Zhang, X.; Bruice, T. C. Biochemistry 2005, 44, 10443-10448.
-
(2005)
Biochemistry
, vol.44
, pp. 10443-10448
-
-
Zhang, X.1
Zhang, X.2
Bruice, T.C.3
-
35
-
-
0037419004
-
-
(f) Guo, H.; Cui, Q.; Lipscomb, W. N.; Karplus, M. Angew. Chem., Int. Ed. 2003, 42, 1508-1511.
-
(2003)
Angew. Chem., Int. Ed
, vol.42
, pp. 1508-1511
-
-
Guo, H.1
Cui, Q.2
Lipscomb, W.N.3
Karplus, M.4
-
37
-
-
33847149654
-
-
Haeffner, F.; Marquez, M.; Gonzalez, C. J. Phys. Chem. A 2007, 111, 268-272.
-
(2007)
J. Phys. Chem. A
, vol.111
, pp. 268-272
-
-
Haeffner, F.1
Marquez, M.2
Gonzalez, C.3
-
38
-
-
20444457113
-
-
(a) Bazzicalupi, C.; Bencini, A.; Bianchi, A.; Danesi, A.; Giorgi, C.; Lodeiro, C.; Pina, F.; Santarelli, S.; Valtancoli, B. Chem. Commun. 2005, 2630-2632.
-
(2005)
Chem. Commun
, pp. 2630-2632
-
-
Bazzicalupi, C.1
Bencini, A.2
Bianchi, A.3
Danesi, A.4
Giorgi, C.5
Lodeiro, C.6
Pina, F.7
Santarelli, S.8
Valtancoli, B.9
-
39
-
-
11144358267
-
-
(b) Garcia-Espana, E.; Gavina, P.; Latorre, J.; Soriano, C.; Verdejo, B. J. Am. Chem. Soc 2004, 126, 5082-5083.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 5082-5083
-
-
Garcia-Espana, E.1
Gavina, P.2
Latorre, J.3
Soriano, C.4
Verdejo, B.5
-
41
-
-
84890969654
-
-
Breslow, R, Ed, Wiley: New York
-
(a) Artificial Enzymes; Breslow, R., Ed.; Wiley: New York, 2005.
-
(2005)
Artificial Enzymes
-
-
-
42
-
-
1242293781
-
-
(b) Cacciapaglia, R.; Di Stefano, S.; Mandolini, L. Acc. Chem. Res. 2004, 37, 113-122.
-
(2004)
Acc. Chem. Res
, vol.37
, pp. 113-122
-
-
Cacciapaglia, R.1
Di Stefano, S.2
Mandolini, L.3
-
43
-
-
0035962884
-
-
(c) Motherwell, W. B.; Bingham, M. J.; Six, Y. Tetrahedron 2001, 57, 4663-4686.
-
(2001)
Tetrahedron
, vol.57
, pp. 4663-4686
-
-
Motherwell, W.B.1
Bingham, M.J.2
Six, Y.3
-
44
-
-
0000153757
-
-
(d) Murakami, Y.; Kikuchi, J.; Hisaeda, Y.; Hayashida, O. Chem. Rev. 1996, 96, 721-758.
-
(1996)
Chem. Rev
, vol.96
, pp. 721-758
-
-
Murakami, Y.1
Kikuchi, J.2
Hisaeda, Y.3
Hayashida, O.4
|