메뉴 건너뛰기




Volumn , Issue , 2007, Pages 450-459

BoostCluster: Boosting clustering by pairwise constraints

Author keywords

Boosting; Data clustering; Pairwise constraints; Semi supervised learning

Indexed keywords

CONSTRAINT THEORY; DATA MINING; INFORMATION RETRIEVAL; SUPERVISED LEARNING;

EID: 36849031309     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1281192.1281242     Document Type: Conference Paper
Times cited : (54)

References (32)
  • 3
    • 36849028220 scopus 로고    scopus 로고
    • Active semi-supervision for pairwise constrained clustering
    • S. Basu, A. Banerjee, and R. J. Mooney. Active semi-supervision for pairwise constrained clustering. In ICDM '04, 2004.
    • (2004) ICDM '04
    • Basu, S.1    Banerjee, A.2    Mooney, R.J.3
  • 4
    • 12244300524 scopus 로고    scopus 로고
    • A probabilistic framework for semi-supervised clustering
    • S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-supervised clustering. In SIGKDD '04, 2004.
    • (2004) SIGKDD '04
    • Basu, S.1    Bilenko, M.2    Mooney, R.J.3
  • 6
    • 0005943240 scopus 로고    scopus 로고
    • Constrained k-means clustering
    • Technical Report 2000-65, Microsoft Research, May
    • K. Bennett, P. Bradley, and A. Demiriz. Constrained k-means clustering. Technical Report 2000-65, Microsoft Research, May 2000.
    • (2000)
    • Bennett, K.1    Bradley, P.2    Demiriz, A.3
  • 7
    • 84880095768 scopus 로고    scopus 로고
    • Clustering under constraints: Feasibility results and the k-means algorithm
    • I. Davidson and S. Ravi. Clustering under constraints: Feasibility results and the k-means algorithm. In SIAM Data Mining Conference, 2005.
    • (2005) SIAM Data Mining Conference
    • Davidson, I.1    Ravi, S.2
  • 10
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 12
    • 34548564268 scopus 로고    scopus 로고
    • A framework for semi-supervised learning based on subjective and objective clustering criteria
    • M. Halkidi, D. Gunopulos, N. Kumar, M. Vazirgiannis, and C. Domeniconi. A framework for semi-supervised learning based on subjective and objective clustering criteria. In ICDM '05, 2005.
    • (2005) ICDM '05
    • Halkidi, M.1    Gunopulos, D.2    Kumar, N.3    Vazirgiannis, M.4    Domeniconi, C.5
  • 13
    • 14344265725 scopus 로고    scopus 로고
    • Boosting margin based distance functions for clustering
    • T. Hertz, A. Bar-Hillel, and D. Weinshall. Boosting margin based distance functions for clustering. In ICML '04, 2004.
    • (2004) ICML '04
    • Hertz, T.1    Bar-Hillel, A.2    Weinshall, D.3
  • 14
    • 33749239457 scopus 로고    scopus 로고
    • Learning a kernel function for classification with small training samples
    • T. Hertz, A. B. Hillel, and D. Weinshall. Learning a kernel function for classification with small training samples. In ICML '06, 2006.
    • (2006) ICML '06
    • Hertz, T.1    Hillel, A.B.2    Weinshall, D.3
  • 15
    • 33845594193 scopus 로고    scopus 로고
    • Learning distance metrics with contextual constraints for image retrieval
    • S. C. H. Hoi, W. Liu, M. R. Lyu, and W.-Y. Ma. Learning distance metrics with contextual constraints for image retrieval. In CVPR '06, 2006.
    • (2006) CVPR '06
    • Hoi, S.C.H.1    Liu, W.2    Lyu, M.R.3    Ma, W.-Y.4
  • 16
    • 84893405732 scopus 로고    scopus 로고
    • Data clustering: A review
    • September
    • A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. A CM Comput. Surv., 31(3):264-323, September 1999.
    • (1999) A CM Comput. Surv , vol.31 , Issue.3 , pp. 264-323
    • Jain, A.K.1    Murty, M.N.2    Flynn, P.J.3
  • 18
    • 9444294778 scopus 로고    scopus 로고
    • From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering
    • D. Klein, S. D. Kamvar, and C. D. Manning. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In ICML'02, 2002.
    • (2002) ICML'02
    • Klein, D.1    Kamvar, S.D.2    Manning, C.D.3
  • 19
    • 31844447616 scopus 로고    scopus 로고
    • Semi-supervised graph clustering: A kernel approach
    • B. Kulis, S. Basu, I. Dhillon, and R. Mooney. Semi-supervised graph clustering: a kernel approach. In ICML '05, 2005.
    • (2005) ICML '05
    • Kulis, B.1    Basu, S.2    Dhillon, I.3    Mooney, R.4
  • 20
    • 1942516950 scopus 로고    scopus 로고
    • Learning with idealized kernels
    • J. T. Kwok and I. W. Tsang. Learning with idealized kernels. In ICML '03, 2003.
    • (2003) ICML '03
    • Kwok, J.T.1    Tsang, I.W.2
  • 22
    • 84880128402 scopus 로고    scopus 로고
    • Model-based clustering with probabilistic constraints
    • M. H. C. Law, A. P. Topchy, and A. K. Jain. Model-based clustering with probabilistic constraints. In SDM '05, 2005.
    • (2005) SDM '05
    • Law, M.H.C.1    Topchy, A.P.2    Jain, A.K.3
  • 23
    • 84898984833 scopus 로고    scopus 로고
    • Semi-supervised learning with penalized probabilistic clustering
    • Z. Lu and T. Leen. Semi-supervised learning with penalized probabilistic clustering. In NIPS '05, 2005.
    • (2005) NIPS '05
    • Lu, Z.1    Leen, T.2
  • 24
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In NIPS '01, 2001.
    • (2001) NIPS '01
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 25
    • 84898997673 scopus 로고    scopus 로고
    • Learning a distance metric from relative comparisons
    • M. Schultz and T. Joachims. Learning a distance metric from relative comparisons. In NIPS '03, 2003.
    • (2003) NIPS '03
    • Schultz, M.1    Joachims, T.2
  • 27
  • 28
    • 33749257955 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K. Weinberger, J. Blitzer, and L. Saul. Distance metric learning for large margin nearest neighbor classification. In NIPS '06, 2006.
    • (2006) NIPS '06
    • Weinberger, K.1    Blitzer, J.2    Saul, L.3
  • 29
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning with application to clustering with side-information. In NIPS '03, 2003.
    • (2003) NIPS '03
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4
  • 30
    • 35148844074 scopus 로고    scopus 로고
    • An efficient algorithm for local distance metric learning
    • L. Yang, R. Jin, R. Sukthankar, and Y. Liu. An efficient algorithm for local distance metric learning. In AAAI '06, 2006.
    • (2006) AAAI '06
    • Yang, L.1    Jin, R.2    Sukthankar, R.3    Liu, Y.4
  • 31
    • 85024373635 scopus 로고    scopus 로고
    • A re-examination of text categorization methods
    • Y. Yang and X. Liu. A re-examination of text categorization methods. In SIGIR '99, 1999.
    • (1999) SIGIR '99
    • Yang, Y.1    Liu, X.2
  • 32
    • 84880784532 scopus 로고    scopus 로고
    • Parametric distance metric learning with label information
    • Z. Zhang, J. Kwok, and D. Yeung. Parametric distance metric learning with label information. In IJCAI'03, 2003.
    • (2003) IJCAI'03
    • Zhang, Z.1    Kwok, J.2    Yeung, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.