메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Adaptive distance metrie learning for clustering

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE ALGORITHMS; CONSTRAINT THEORY; LEARNING ALGORITHMS; SECURITY OF DATA;

EID: 35148895915     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2007.383103     Document Type: Conference Paper
Times cited : (114)

References (28)
  • 1
    • 9444289383 scopus 로고    scopus 로고
    • M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised learning on large graphs. In COLT, pages 624-638, 2004. 6
    • M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised learning on large graphs. In COLT, pages 624-638, 2004. 6
  • 2
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. In NIPS, 2003. 1
    • (2003) NIPS , pp. 1
    • Belkin, M.1    Niyogi, P.2
  • 5
    • 84862619225 scopus 로고    scopus 로고
    • Efficient non-parametric function induction in semi-supervised learning
    • O. Delalleau, Y. Bengio, and N. L. Roux. Efficient non-parametric function induction in semi-supervised learning. In AISTATS, 2005. 6
    • (2005) AISTATS , pp. 6
    • Delalleau, O.1    Bengio, Y.2    Roux, N.L.3
  • 6
    • 32444442667 scopus 로고    scopus 로고
    • A unified view of kernel k-means, spectral clustering and graph partitioning
    • Technical report, Department of Computer Sciences, University of Texas at Austin, 2005. 3
    • I. S. Dhillon, Y. Guan, and B. Kulis. A unified view of kernel k-means, spectral clustering and graph partitioning. Technical report, Department of Computer Sciences, University of Texas at Austin, 2005. 3
    • Dhillon, I.S.1    Guan, Y.2    Kulis, B.3
  • 7
    • 0001493668 scopus 로고
    • Asymptotics of graphical projection pursuit
    • 793815, 12
    • P. Diaconis and D. Freedman. Asymptotics of graphical projection pursuit. Annuals of Statistics, 12:793815, 1984. 2
    • (1984) Annuals of Statistics , vol.12
    • Diaconis, P.1    Freedman, D.2
  • 8
    • 33749255098 scopus 로고    scopus 로고
    • C. Ding, X. He, and H. D. Simon. On the equivalence of nonnegative matrix factorization and spectral clustering. In SDM, pages 606-610, 2006. 2, 3
    • C. Ding, X. He, and H. D. Simon. On the equivalence of nonnegative matrix factorization and spectral clustering. In SDM, pages 606-610, 2006. 2, 3
  • 10
    • 0035363672 scopus 로고    scopus 로고
    • From few to many: Illumination cone models for face recognition under variable lighting and pose
    • A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intelligence, 23:643-660, 2001. 2
    • (2001) IEEE Trans. Pattern Anal. Mach. Intelligence , vol.23 , Issue.643-660 , pp. 2
    • Georghiades, A.1    Belhumeur, P.2    Kriegman, D.3
  • 11
    • 0041753016 scopus 로고
    • On almost linearity of low dimensional projections from high dimensional data
    • P. Hall and K. Li. On almost linearity of low dimensional projections from high dimensional data. Annuals of Statistics, 21:867-889, 1993. 2
    • (1993) Annuals of Statistics , vol.21 , Issue.867-889 , pp. 2
    • Hall, P.1    Li, K.2
  • 13
    • 33845535234 scopus 로고    scopus 로고
    • Laplacian score for feature selection
    • X. He, D. Cai, and P. Niyogi. Laplacian score for feature selection. In NIPS. 4
    • NIPS , pp. 4
    • He, X.1    Cai, D.2    Niyogi, P.3
  • 16
    • 33749243962 scopus 로고    scopus 로고
    • Discriminative cluster analysis
    • F. D. la Torre Frade and T. Kanade. Discriminative cluster analysis. In ICML, pages 241-248, 2006. 1, 3
    • (2006) ICML , vol.1
    • la Torre Frade, F.D.1    Kanade, T.2
  • 18
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally : Unsupervised learning of low dimensional manifolds
    • L. K. Saul and S. T. Roweis. Think globally, fit locally : Unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research, 4:119-155, 2003. 1
    • (2003) Journal of Machine Learning Research , vol.4 , Issue.119-155 , pp. 1
    • Saul, L.K.1    Roweis, S.T.2
  • 19
    • 84937544784 scopus 로고    scopus 로고
    • N. Shental, T. Hertz, D. Weinshall, and M. Pavel. Adjustment learning and relevant component analysis. In ECCV, pages 776-792, 2002. 1
    • N. Shental, T. Hertz, D. Weinshall, and M. Pavel. Adjustment learning and relevant component analysis. In ECCV, pages 776-792, 2002. 1
  • 20
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • 2905500
    • J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000. 1
    • (2000) Science , vol.2319-2323 , pp. 1
    • Tenenbaum, J.1    de Silva, V.2    Langford, J.3
  • 21
    • 35148893939 scopus 로고    scopus 로고
    • K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clustering with background knowledge. In ICML, pages 577-584, 2001. 5
    • K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clustering with background knowledge. In ICML, pages 577-584, 2001. 5
  • 22
    • 33749550361 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K. Weinberger, J. Blitzer, and L. Saul. Distance metric learning for large margin nearest neighbor classification. In NIPS, 2005. 1
    • (2005) NIPS , pp. 1
    • Weinberger, K.1    Blitzer, J.2    Saul, L.3
  • 23
    • 85133386144 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning with application to clustering with side-information. In NIPS, 2002. 1
    • (2002) NIPS , pp. 1
    • Xing, E.1    Ng, A.2    Jordan, M.3    Russell, S.4
  • 24
    • 35148876898 scopus 로고    scopus 로고
    • Distance metric learning: A comprehensive survey
    • Technical report, Department of Computer Science and Engineering, Michigan State University, 2006. 1
    • L. Yang and R. Jin. Distance metric learning: A comprehensive survey. Technical report, Department of Computer Science and Engineering, Michigan State University, 2006. 1
    • Yang, L.1    Jin, R.2
  • 25
    • 35148844074 scopus 로고    scopus 로고
    • An efficient algorithm for local distance metric learning
    • L. Yang, R. Jin, R. Sukthankar, and Y. Liu. An efficient algorithm for local distance metric learning. In AAAI, 2006. 1
    • (2006) AAAI , pp. 1
    • Yang, L.1    Jin, R.2    Sukthankar, R.3    Liu, Y.4
  • 27
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • Technical report, Computer Sciences, University of Wisconsin-Madison, 2, 5
    • X. J. Zhu. Semi-supervised learning literature survey. Technical report, Computer Sciences, University of Wisconsin-Madison, 2005. 2, 5
    • (2005)
    • Zhu, X.J.1
  • 28
    • 1942484430 scopus 로고    scopus 로고
    • Semisupervised learning using gaussian fields and harmonic functions
    • X. J. Zhu, Z. Ghahramani, and J. Lafferty. Semisupervised learning using gaussian fields and harmonic functions. In ICML, 2003. 6
    • (2003) ICML , pp. 6
    • Zhu, X.J.1    Ghahramani, Z.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.