-
1
-
-
84858475647
-
-
CacheLogic. http://www.cachelogic.com.
-
CacheLogic
-
-
-
2
-
-
18144414978
-
Is P2P dying or just hiding?
-
Dallas, TX, USA, November
-
Thomas Karagiannis, Andre Broido, Nevil Brownlee, Kc Claffy, Michalis Faloutsos, "Is P2P dying or just hiding?", In Globecom, Dallas, TX, USA, November 2004.
-
(2004)
Globecom
-
-
Karagiannis, T.1
Broido, A.2
Brownlee, N.3
Claffy, K.4
Faloutsos, M.5
-
3
-
-
33751065383
-
-
New York, USA
-
S Sen, O. Spatscheck, D.M Wang, "Accurate, Scalable In-Network Identification of P2P Traffic Using Application Signatures", WWW2004, New York, USA, 2004.
-
(2004)
Accurate, Scalable In-Network Identification of P2P Traffic Using Application Signatures
-
-
Sen, S.1
Spatscheck, O.2
Wang, D.M.3
-
4
-
-
14944383480
-
Class-of-service mapping for qos: A statistical signature-based approach to ip traffic classification
-
New York, NY, USA, ACM Press
-
Matthew Roughan, Subhabrata Sen, Oliver Spatscheck, Nick Duffield, "Class-of-service mapping for qos: a statistical signature-based approach to ip traffic classification", In IMC '04: Proceedings of the 4th ACM SIGCOMM conference on Internet measurement, pages 135-148, New York, NY, USA, 2004. ACM Press.
-
(2004)
IMC '04: Proceedings of the 4th ACM SIGCOMM conference on Internet measurement
, pp. 135-148
-
-
Roughan, M.1
Sen, S.2
Spatscheck, O.3
Duffield, N.4
-
7
-
-
14944345677
-
Transport Layer Identification of P2P Traffic
-
ACM Press, New York, USA
-
T Karagiannis, A. Broido, M Faloutsos, "Transport Layer Identification of P2P Traffic", Proceedings of the 4th ACM SIGCOMM conference on Internet measurement, ACM Press, New York, USA, 2004, pp. 121-134.
-
(2004)
Proceedings of the 4th ACM SIGCOMM conference on Internet measurement
, pp. 121-134
-
-
Karagiannis, T.1
Broido, A.2
Faloutsos, M.3
-
8
-
-
0242276270
-
Towards Peer-to-Peer Traffic Analysis Using Flows
-
Springer, Heidelberg, Germany
-
M.S Kim, H.J Kang, J.W Hong, "Towards Peer-to-Peer Traffic Analysis Using Flows", Lecture Notes in Computer Science, Springer, Heidelberg, Germany, 2003, pp. 55-67.
-
(2003)
Lecture Notes in Computer Science
, pp. 55-67
-
-
Kim, M.S.1
Kang, H.J.2
Hong, J.W.3
-
9
-
-
34547245177
-
Cross-Layer Peerto-Peer Traffic Identification and Optimization Based on Active Networking
-
France, November 21-23
-
Dedinski, I., De Meer, H., Han, L., Mathy, L., Pezaros, D., P., Sventek, J., S., Xiaoying, Z., Cross-Layer Peerto-Peer Traffic Identification and Optimization Based on Active Networking, in Proceedings of the Seventh Annual International Working Conference on Active and Programmable Networks (IWAN'05), CICA, Sophia Antipolis, French Riviera, La Cote d'Azur, France, November 21-23, 2005.
-
(2005)
Proceedings of the Seventh Annual International Working Conference on Active and Programmable Networks (IWAN'05), CICA, Sophia Antipolis, French Riviera, La Cote d'Azur
-
-
Dedinski, I.1
De Meer, H.2
Han, L.3
Mathy, L.4
Pezaros, D.P.5
Sventek, J.S.6
Xiaoying, Z.7
-
10
-
-
36248976380
-
-
N. Cristianini, S. Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods, Cambridge University Press, Cambridge, UK.
-
N. Cristianini, S. Taylor J (2000) "An introduction to support vector machines and other kernel-based learning methods", Cambridge University Press, Cambridge, UK.
-
-
-
-
11
-
-
34249753618
-
Support vector networks
-
C. Cortes and V. Vapnik. "Support vector networks", Machine Learning, 20:273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
12
-
-
84899013173
-
Support Vector Regression Machines
-
M. Mozer, M. Jordan, and T. Petsche eds, MIT Press, Cambridge, MA, in press
-
Drucker, H.; Burges, C.; Kaufman, L.; Smola, A.; Vapnik, V. 1997. Support Vector Regression Machines. In: M. Mozer, M. Jordan, and T. Petsche (eds.): Neural Information Processing Systems, Vol. 9. MIT Press, Cambridge, MA, 1997 (in press).
-
(1997)
Neural Information Processing Systems
, vol.9
-
-
Drucker, H.1
Burges, C.2
Kaufman, L.3
Smola, A.4
Vapnik, V.5
-
14
-
-
84887252594
-
Support vector method for function approximation, regression estimation and signal processing
-
Cambridge, MA: MIT Press
-
V.Vapnik, S. Golowich, and A. Smola, "Support vector method for function approximation, regression estimation and signal processing", in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1997, vol. 9.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
-
-
Vapnik, V.1
Golowich, S.2
Smola, A.3
-
16
-
-
14344250451
-
-
I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support Vector Learning for Interdependent and Structured Output Spaces, ICML, 2004.
-
(2004)
Support Vector Learning for Interdependent and Structured Output Spaces, ICML
-
-
Tsochantaridis, I.1
Hofmann, T.2
Joachims, T.3
Altun, Y.4
-
17
-
-
0002714543
-
Making large-Scale SVM Learning Practical
-
B. Schölkopf and C. Burges and A. Smola ed, MIT-Press
-
T. Joachims, Making large-Scale SVM Learning Practical. Advances in Kernel Methods - Support Vector Learning, B. Schölkopf and C. Burges and A. Smola (ed.), MIT-Press, 1999.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
-
-
Joachims, T.1
-
18
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
June
-
C. J. Burges, "A tutorial on support vector machines for pattern recognition", Knowledge Discovery and Data Mining, vol. 2, pp. 121-167, June 1998.
-
(1998)
Knowledge Discovery and Data Mining
, vol.2
, pp. 121-167
-
-
Burges, C.J.1
-
19
-
-
0013451236
-
Pattern classification by convex analysis
-
M. N. Wernick, "Pattern classification by convex analysis", J. Opt. Soc. Amer. A, vol. 8, pp. 1874-1880, 1991.
-
(1991)
J. Opt. Soc. Amer. A
, vol.8
, pp. 1874-1880
-
-
Wernick, M.N.1
-
20
-
-
17444438778
-
New support vector algorithms
-
B. Schölkopf, A. J. Smola, R. Williams, and P. Bartlett, "New support vector algorithms," Neural Computation, vol. 12, pp. 1083-1121, 2000.
-
(2000)
Neural Computation
, vol.12
, pp. 1083-1121
-
-
Schölkopf, B.1
Smola, A.J.2
Williams, R.3
Bartlett, P.4
-
23
-
-
0003200953
-
Artificial Intelligence and Intrusion Detection: Current and Future Directions
-
October
-
Frank, J. Artificial Intelligence and Intrusion Detection: Current and Future Directions. 17th National Computer Security Conference, pp. 22-33, October 1994.
-
(1994)
17th National Computer Security Conference
, pp. 22-33
-
-
Frank, J.1
-
24
-
-
1642475277
-
SVM classification-based intrusion detection system
-
May
-
Q. A. Tran, Q. L. Zhang, X. Li, "SVM classification-based intrusion detection system", Journal of China Institute of Communications, vol. 23, pp. 51-56, May 2002.
-
(2002)
Journal of China Institute of Communications
, vol.23
, pp. 51-56
-
-
Tran, Q.A.1
Zhang, Q.L.2
Li, X.3
-
26
-
-
0037822222
-
Asymptotic behaviors of support vector machines with Gaussian kernel
-
Keerthi, S. S., C.-J. Lin. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation 15 (7), 1667-1689.
-
Neural Computation
, vol.15
, Issue.7
, pp. 1667-1689
-
-
Keerthi, S.S.1
Lin, C.-J.2
-
27
-
-
3843050541
-
A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods
-
Technical report, Department of Computer Science and Information Engineering, National Taiwan University. Available at
-
Lin, H.-T., C.-J. Lin. A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Technical report, Department of Computer Science and Information Engineering, National Taiwan University. Available at http://www.csie.ntu.edu.tw/~cjlin/papers/tanh.pdf.
-
-
-
Lin, H.-T.1
Lin, C.-J.2
|