메뉴 건너뛰기




Volumn 1115, Issue , 2007, Pages 90-101

Benchmarking of dynamic Bayesian networks inferred from stochastic time-series data

Author keywords

Benchmarking; Dynamic Bayesian networks; Gene networks; Network inference; Stochastic; Time series

Indexed keywords

BAYES THEOREM; BIOENGINEERING; CONFERENCE PAPER; GENE EXPRESSION; GENETIC REGULATION; LINEAR REGRESSION ANALYSIS; MOTIVATION; QUALITY CONTROL; SCORING SYSTEM; STOCHASTIC MODEL; TIME SERIES ANALYSIS;

EID: 36249003810     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1196/annals.1407.009     Document Type: Conference Paper
Times cited : (9)

References (16)
  • 1
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein signaling networks derived from multiparameter single-cell data
    • SACHS, K., O. PEREZ, D. PE'ER, et al. 2005. Causal protein signaling networks derived from multiparameter single-cell data. Science 308: 523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • SACHS, K.1    PEREZ, O.2    PE'ER, D.3
  • 2
    • 8844277626 scopus 로고    scopus 로고
    • Analyzing time series gene expression data
    • BAR-JOSEPH, Z. 2004. Analyzing time series gene expression data. Bioinformatics 20: 2493-503.
    • (2004) Bioinformatics , vol.20 , pp. 2493-2503
    • BAR-JOSEPH, Z.1
  • 3
    • 4143058645 scopus 로고    scopus 로고
    • Gene networks inference using dynamic Bayesian networks
    • PERRIN, B.E., L. RALAIVOLA, A. MAZURIE, et al. 2003. Gene networks inference using dynamic Bayesian networks. Bioinformatics 19(Suppl 2): II138-II148.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 2
    • PERRIN, B.E.1    RALAIVOLA, L.2    MAZURIE, A.3
  • 4
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • FRIEDMAN, N. 2004. Inferring cellular networks using probabilistic graphical models. Science 303: 799-805.
    • (2004) Science , vol.303 , pp. 799-805
    • FRIEDMAN, N.1
  • 6
    • 10044240790 scopus 로고    scopus 로고
    • Using prior knowledge to improve genetic network reconstruction from microarray data
    • LE, P.P., A. BAHL & L.H. UNGAR. 2004. Using prior knowledge to improve genetic network reconstruction from microarray data. In Silico Biol. 4: 335-353.
    • (2004) In Silico Biol , vol.4 , pp. 335-353
    • LE, P.P.1    BAHL, A.2    UNGAR, L.H.3
  • 7
    • 1342286937 scopus 로고    scopus 로고
    • Studying the conditions for learning dynamic Bayesian networks to discover genetic regulatory networks
    • VAN BERLO, R.J.P., E.P. VAN SOMEREN & M.J.T. REINDERS. 2003. Studying the conditions for learning dynamic Bayesian networks to discover genetic regulatory networks. Simulation 79: 689-702.
    • (2003) Simulation , vol.79 , pp. 689-702
    • VAN BERLO, R.J.P.1    VAN SOMEREN, E.P.2    REINDERS, M.J.T.3
  • 8
    • 0043287109 scopus 로고    scopus 로고
    • Unravelling small world networks
    • HIGHAM, D.J. 2003. Unravelling small world networks. J. Comput. Appl. Math. 158: 61-74.
    • (2003) J. Comput. Appl. Math , vol.158 , pp. 61-74
    • HIGHAM, D.J.1
  • 9
    • 0002370418 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian Networks
    • M. Jordan, Ed. MIT Press. Cambridge, MA
    • HECKERMAN, D. 1999. A tutorial on learning with Bayesian Networks. In Learning in Graphical Models. M. Jordan, Ed. MIT Press. Cambridge, MA.
    • (1999) Learning in Graphical Models
    • HECKERMAN, D.1
  • 10
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • COOPER, G.F. & E. HERSKOVITS. 1992. A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9: 309-347.
    • (1992) Mach. Learn , vol.9 , pp. 309-347
    • COOPER, G.F.1    HERSKOVITS, E.2
  • 11
    • 0001173999 scopus 로고
    • Construction of Bayesian network structures from data: A brief survey and an efficient algorithm
    • SINGH, M. & M. VALTORTA. 1995. Construction of Bayesian network structures from data: a brief survey and an efficient algorithm. Int. J. Approx. Reasoning 12: 111-131.
    • (1995) Int. J. Approx. Reasoning , vol.12 , pp. 111-131
    • SINGH, M.1    VALTORTA, M.2
  • 12
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co-expression clustering to reverse-engineering
    • D'HAESELEER, P., S. LIANG & R. SOMOGYI. 2000. Genetic network inference: from co-expression clustering to reverse-engineering. Bioinformatics 16: 707-726.
    • (2000) Bioinformatics , vol.16 , pp. 707-726
    • D'HAESELEER, P.1    LIANG, S.2    SOMOGYI, R.3
  • 13
    • 0001290841 scopus 로고    scopus 로고
    • Glossary of terms
    • KOHAVI, R. & F. PROVOST. 1998. Glossary of terms. Mach. Learn. 30: 271-274.
    • (1998) Mach. Learn , vol.30 , pp. 271-274
    • KOHAVI, R.1    PROVOST, F.2
  • 15
    • 33750072151 scopus 로고    scopus 로고
    • A Bayesian network scoring metric that is based on globally uniform parameter priors
    • A. Darwiche & N. Friedman, Eds, Morgan Kaufmann Publishers, San Francisco, CA
    • KAYAALP, M. & G.F. COOPER. 2002. A Bayesian network scoring metric that is based on globally uniform parameter priors. In Proceedings of the 18th Annual Conference on Uncertainty in AI. (UAI - 02). A. Darwiche & N. Friedman, Eds.: 252-258. Morgan Kaufmann Publishers, San Francisco, CA.
    • (2002) Proceedings of the 18th Annual Conference on Uncertainty in AI. (UAI - 02) , pp. 252-258
    • KAYAALP, M.1    COOPER, G.F.2
  • 16
    • 0038321342 scopus 로고    scopus 로고
    • Bayesian classification and feature reduction using uniform Dirichlet priors
    • LYNCH, R.S., JR. & P.K. WILLETT. 2003. Bayesian classification and feature reduction using uniform Dirichlet priors. IEEE Trans. Syst. Man Cybern. B 33: 448-464.
    • (2003) IEEE Trans. Syst. Man Cybern. B , vol.33 , pp. 448-464
    • LYNCH, R.S.J.1    WILLETT, P.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.