메뉴 건너뛰기




Volumn 33, Issue 3, 2003, Pages 448-464

Bayesian classification and feature reduction using uniform Dirichlet priors

Author keywords

Class specific features; Discrete features; Feature selection; Neural networks; Noninformative prior; UCI repository

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); NEURAL NETWORKS; PROBABILITY;

EID: 0038321342     PISSN: 10834419     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCB.2003.811121     Document Type: Article
Times cited : (28)

References (60)
  • 1
    • 84901454245 scopus 로고    scopus 로고
    • Multiple expert system design by combined feature selection and probability level fusion
    • July
    • F. M. Alkoot and J. Kittler, "Multiple expert system design by combined feature selection and probability level fusion," in Proc. Int. Conf. Information Fusion, July 2000.
    • (2000) Proc. Int. Conf. Information Fusion
    • Alkoot, F.M.1    Kittler, J.2
  • 2
    • 0033328818 scopus 로고    scopus 로고
    • Class-specific feature sets in classification
    • Dec.
    • P. M. Baggenstoss, "Class-specific feature sets in classification," IEEE Trans. Signal Processing, vol. 47; pp. 3428-3432, Dec. 1999.
    • (1999) IEEE Trans. Signal Processing , vol.47 , pp. 3428-3432
    • Baggenstoss, P.M.1
  • 3
    • 0032288546 scopus 로고    scopus 로고
    • Estimating the number of undetected errors: Bayesian model selection
    • S. Basu and N. Ebrahimi, "Estimating the number of undetected errors: Bayesian model selection," in Proc. Ninth Int. Symp. Software Engineering, 1998, pp. 22-31.
    • (1998) Proc. Ninth Int. Symp. Software Engineering , pp. 22-31
    • Basu, S.1    Ebrahimi, N.2
  • 4
    • 33744958288 scopus 로고    scopus 로고
    • Nearest neighbor classification from multiple feature subsets
    • Aug.
    • S. D. Bay, "Nearest neighbor classification from multiple feature subsets," Intell. Data Anal., vol. 34, no. 3, pp. 191-209, Aug. 1999.
    • (1999) Intell. Data Anal. , vol.34 , Issue.3 , pp. 191-209
    • Bay, S.D.1
  • 6
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classifi-cation algorithms: Bagging, boosting, and variants
    • E. Bauer and R. Kohavi, "An empirical comparison of voting classifi-cation algorithms: Bagging, boosting, and variants," Machine Learning, vol. 36, pp. 105-142, 1999.
    • (1999) Machine Learning , vol.36 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 10
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A. L. Blum and P. Langley, "Selection of relevant features and examples in machine learning," in Proc. Artificial Intelligence, 1997, pp. 245-271.
    • (1997) Proc. Artificial Intelligence , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 11
    • 0008404530 scopus 로고
    • A multinomial Bayesian approach to the estimation of population and vocabulary size
    • C. G. E. Boender and A. H. G. Rinnooy Kan, "A multinomial Bayesian approach to the estimation of population and vocabulary size," Biometrika, vol. 74, no. 4, pp. 849-856, 1987.
    • (1987) Biometrika , vol.74 , Issue.4 , pp. 849-856
    • Boender, C.G.E.1    Kan, A.H.G.R.2
  • 12
    • 0028404888 scopus 로고
    • Toward Bayes-optimal linear dimension reduction
    • Apr.
    • L. J. Buturović, "Toward Bayes-optimal linear dimension reduction," IEEE Trans. Pattern Anal. Machine Intell., vol. 16, pp. 420-423, Apr. 1994.
    • (1994) IEEE Trans. Pattern Anal. Machine Intell. , vol.16 , pp. 420-423
    • Buturović, L.J.1
  • 13
    • 0002980086 scopus 로고    scopus 로고
    • Learning classification trees
    • AUTHOR: What year was this published?
    • W. L. Buntine, "Learning classification trees," Statist. Comput., vol. 2, pp. 63-73, AUTHOR: What year was this published?.
    • Statist. Comput. , vol.2 , pp. 63-73
    • Buntine, W.L.1
  • 17
    • 0005371653 scopus 로고
    • Lower bounds on Bayes factors for multinomial distributions, with applications to chi-square tests of fit
    • M. Delampady and J. O. Berger, "Lower bounds on Bayes factors for multinomial distributions, with applications to chi-square tests of fit," Ann. Statist, vol. 18, no. 3, pp. 1295-1316, 1990.
    • (1990) Ann. Statist , vol.18 , Issue.3 , pp. 1295-1316
    • Delampady, M.1    Berger, J.O.2
  • 22
    • 84948598244 scopus 로고
    • Statistical-model-based speech enhancement systems
    • Oct.
    • Y. Ephraim, "Statistical-model-based speech enhancement systems," Proc. IEEE, vol. 80, no. 10, pp. 1526-1555, Oct. 1992.
    • (1992) Proc. IEEE , vol.80 , Issue.10 , pp. 1526-1555
    • Ephraim, Y.1
  • 28
    • 0030189750 scopus 로고    scopus 로고
    • Covariance matrix estimation and classification with limited training data
    • July
    • J. P. Hoffbeck and D. A. Landgrebe, "Covariance matrix estimation and classification with limited training data," IEEE Trans. Pattern Anal. Machine Intell., vol. 18, pp. 763-767, July 1996.
    • (1996) IEEE Trans. Pattern Anal. Machine Intell. , vol.18 , pp. 763-767
    • Hoffbeck, J.P.1    Landgrebe, D.A.2
  • 29
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan.
    • G. F. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inform. Theory, vol. 14, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inform. Theory , vol.14 , pp. 55-63
    • Hughes, G.F.1
  • 30
  • 31
    • 0033900150 scopus 로고    scopus 로고
    • A Bayesian predictive classification approach to robust speech recognition
    • Mar.
    • Q. Huo and C. Lee, "A Bayesian predictive classification approach to robust speech recognition," IEEE Trans. Speech Audio Processing, vol. 8, pp. 200-204, Mar. 2000.
    • (2000) IEEE Trans. Speech Audio Processing , vol.8 , pp. 200-204
    • Huo, Q.1    Lee, C.2
  • 32
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample size performance
    • Feb.
    • A. Jain and D. Zongker, "Feature selection: Evaluation, application, and small sample size performance," IEEE Trans. Pattern Anal. Machine Intell., vol. 19, pp. 153-158, Feb. 1997.
    • (1997) IEEE Trans. Pattern Anal. Machine Intell. , vol.19 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 33
    • 0032644604 scopus 로고    scopus 로고
    • Improving Viterbi Bayesian predictive classification via sequential Bayesian learning in robust recognition
    • Aug.
    • H. Jiang, K. Hirose, and Q. Huo, "Improving Viterbi Bayesian predictive classification via sequential Bayesian learning in robust recognition," Speech Commun., vol. 28, no. 4, pp. 313-326, Aug. 1999.
    • (1999) Speech Commun. , vol.28 , Issue.4 , pp. 313-326
    • Jiang, H.1    Hirose, K.2    Huo, Q.3
  • 34
    • 0002774069 scopus 로고
    • Feature set search algorithms
    • C. H. Chen, Ed. Alphen aan den Rijn, The Netherlands: Sijthoff and Noordhoff
    • J. Kittler, "Feature set search algorithms," in Pattern Recognition and Signal Processing, C. H. Chen, Ed. Alphen aan den Rijn, The Netherlands: Sijthoff and Noordhoff, 1978, pp. 41-60.
    • (1978) Pattern Recognition and Signal Processing , pp. 41-60
    • Kittler, J.1
  • 35
    • 0030786843 scopus 로고    scopus 로고
    • Principal feature classification
    • Jan.
    • Q. Li and D. W. Tufts, "Principal feature classification," IEEE Trans. Neural Networks, vol. 8, pp. 155-160, Jan. 1997.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 155-160
    • Li, Q.1    Tufts, D.W.2
  • 36
    • 3943092795 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and naming time of thirty-three old and new classification algorithms
    • T. Lim, W. Loh, and Y. Shih, "A comparison of prediction accuracy, complexity, and naming time of thirty-three old and new classification algorithms," Machine Learning J., 1999.
    • (1999) Machine Learning J.
    • Lim, T.1    Loh, W.2    Shih, Y.3
  • 37
    • 0031189159 scopus 로고    scopus 로고
    • Feature selection via discretization
    • July/Aug.
    • H. Liu and R. Setiono, "Feature selection via discretization," IEEE Trans. Knowledge Data Eng., vol. 9, pp. 642-645, July/Aug. 1997.
    • (1997) IEEE Trans. Knowledge Data Eng. , vol.9 , pp. 642-645
    • Liu, H.1    Setiono, R.2
  • 38
    • 0035171437 scopus 로고    scopus 로고
    • Utilizing a class labeling feature in an adaptive Bayesian classifier
    • Apr.
    • R. S. Lynch, Jr. and P. K. Willett, "Utilizing a class labeling feature in an adaptive Bayesian classifier," in Proc. SPIE Int. Conf. AeroSense, Apr. 2001.
    • (2001) Proc. SPIE Int. Conf. AeroSense
    • Lynch R.S., Jr.1    Willett, P.K.2
  • 39
    • 0034504586 scopus 로고    scopus 로고
    • Adaptive Bayesian classification using noninformative Dirichlet priors
    • Oct.
    • -."Adaptive Bayesian classification using noninformative Dirichlet priors," in Proc. IEEE Int. Conf. Systems, Man, Cybern., Oct. 2000.
    • (2000) Proc. IEEE Int. Conf. Systems, Man, Cybern.
  • 41
    • 0037924713 scopus 로고    scopus 로고
    • Bayesian classification using misla beled training data and a noninformative prior
    • July
    • R. S. Lynch, Jr. and P. K. Willett, "Bayesian classification using misla beled training data and a noninformative prior," J. Franklin Inst., July 1999.
    • (1999) J. Franklin Inst.
    • Lynch R.S., Jr.1    Willett, P.K.2
  • 42
    • 0032653123 scopus 로고    scopus 로고
    • Performance considerations for a combined information classification test using Dirichlet priors
    • June
    • -, "Performance considerations for a combined information classification test using Dirichlet priors," IEEE Trans. Signal Processing, vol. 47, pp. 1711-1715, June 1999.
    • (1999) IEEE Trans. Signal Processing , vol.47 , pp. 1711-1715
  • 43
    • 0026239053 scopus 로고
    • A Bayesian classification approach with application to speech recognition
    • Oct.
    • N. Merhav and Y. Ephraim, "A Bayesian classification approach with application to speech recognition," IEEE Trans. Acoust., Speech, Signal Processing, vol. 39, pp. 2157-2166, Oct. 1991.
    • (1991) IEEE Trans. Acoust., Speech, Signal Processing , vol.39 , pp. 2157-2166
    • Merhav, N.1    Ephraim, Y.2
  • 45
    • 0002567040 scopus 로고
    • On the compound multinomial distribution, the multivariate beta-distribution, and correlation's among proportions
    • J. E. Mosimann, "On the compound multinomial distribution, the multivariate beta-distribution, and correlation's among proportions," Biometrika, vol. 49, no. 1, pp. 65-82, 1962.
    • (1962) Biometrika , vol.49 , Issue.1 , pp. 65-82
    • Mosimann, J.E.1
  • 46
    • 0029307021 scopus 로고
    • Combining image compression and classification using vector quantization
    • May
    • K. L. Oehler and R. M. Gray, "Combining image compression and classification using vector quantization," IEEE Trans. Pattern Anal. Machine Intell., vol. 17, pp. 461-473, May 1995.
    • (1995) IEEE Trans. Pattern Anal. Machine Intell. , vol.17 , pp. 461-473
    • Oehler, K.L.1    Gray, R.M.2
  • 47
    • 0033884712 scopus 로고    scopus 로고
    • Model complexity adaptation using a discriminative measure
    • Mar.
    • M. Padmanabhan and L. R. Bahl, "Model complexity adaptation using a discriminative measure," IEEE Trans. Speech Audio Processing, vol. 8, pp. 205-208, Mar. 2000.
    • (2000) IEEE Trans. Speech Audio Processing , vol.8 , pp. 205-208
    • Padmanabhan, M.1    Bahl, L.R.2
  • 48
    • 0001051422 scopus 로고
    • Adaptive classification by neural net based prototype populations
    • Aug.
    • K. Peleg and U. Ben Hanan, "Adaptive classification by neural net based prototype populations," Int. J. Pattern Recognition Artificial Intell., vol. 7, no. 4, pp. 917-933, Aug. 1993.
    • (1993) Int. J. Pattern Recognition Artificial Intell. , vol.7 , Issue.4 , pp. 917-933
    • Peleg, K.1    Hanan, U.B.2
  • 49
    • 0038262190 scopus 로고    scopus 로고
    • Boosting the differences: A fast Bayesian classifier neural network
    • N. S. Philip and K. B. Joseph, "Boosting the differences: A fast Bayesian classifier neural network," Intell. Data Anal, vol. 4, no. 6, pp. 463-473, 2000.
    • (2000) Intell. Data Anal , vol.4 , Issue.6 , pp. 463-473
    • Philip, N.S.1    Joseph, K.B.2
  • 50
    • 0033896503 scopus 로고    scopus 로고
    • Estimation of generalized mixture in the case of correlated sensors
    • Feb.
    • W. Pieczynski, J. Bouvrais, and C. Michel, "Estimation of generalized mixture in the case of correlated sensors," IEEE Trans. Image Processing, vol. 9, pp. 308-312, Feb. 2000.
    • (2000) IEEE Trans. Image Processing , vol.9 , pp. 308-312
    • Pieczynski, W.1    Bouvrais, J.2    Michel, C.3
  • 52
    • 84937183098 scopus 로고    scopus 로고
    • Adaptive learning and compensation of hidden Markov model for robust speech recognition
    • Dec.
    • H. Qiang, "Adaptive learning and compensation of hidden Markov model for robust speech recognition," Commun. COLIPS, vol. 8, no. 2, pp. 161-189, Dec. 1998.
    • (1998) Commun. COLIPS , vol.8 , Issue.2 , pp. 161-189
    • Qiang, H.1
  • 54
    • 0000120766 scopus 로고
    • Estimating the dimensions of a model
    • G. Schwartz, "Estimating the dimensions of a model," Ann. Statist., vol., 6, pp. 461-464, 1978.
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwartz, G.1
  • 55
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • Sept.
    • B. M. Shahshahani and D. A. Landgrebe, "The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon," IEEE Trans. Geosci. Remote Sensing, vol. 32, pp. 1087-1095, Sept. 1994.
    • (1994) IEEE Trans. Geosci. Remote Sensing , vol.32 , pp. 1087-1095
    • Shahshahani, B.M.1    Landgrebe, D.A.2
  • 56
    • 0033097744 scopus 로고    scopus 로고
    • Axiomatic approach to feature subset selection based on relevance
    • Mar.
    • H. Wang, D. Bell, and F. Murtagh, "Axiomatic approach to feature subset selection based on relevance," IEEE Trans. Pattern Anal. Machine Intell., vol. 21, pp. 271-277, Mar. 1999.
    • (1999) IEEE Trans. Pattern Anal. Machine Intell. , vol.21 , pp. 271-277
    • Wang, H.1    Bell, D.2    Murtagh, F.3
  • 58
    • 0027876065 scopus 로고
    • Vector quantization technique for nonparametric classifier design
    • Dec.
    • Q. Xie, C. A. Laszlo, and R. K. Ward, "Vector quantization technique for nonparametric classifier design," IEEE Trans. Pattern Anal. Machine Intell., vol. 15. pp. 1326-1329, Dec. 1993.
    • (1993) IEEE Trans. Pattern Anal. Machine Intell. , vol.15 , pp. 1326-1329
    • Xie, Q.1    Laszlo, C.A.2    Ward, R.K.3
  • 59
    • 0031143030 scopus 로고    scopus 로고
    • A new evolutionary system for evolving artificial neural networks
    • May
    • X. Yao and Y. Liu, "A new evolutionary system for evolving artificial neural networks," IEEE Trans. Neural Networks, vol. 8, pp. 694-713, May 1997.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 694-713
    • Yao, X.1    Liu, Y.2
  • 60
    • 0034313673 scopus 로고    scopus 로고
    • Neural networks for classification: A survey
    • Nov.
    • G. P. Zhang, "Neural networks for classification: A survey," IEEE Trans. Syst., Man, Cybern., vol. 30, no. 4, pp. 451-462, Nov. 2000.
    • (2000) IEEE Trans. Syst., Man, Cybern. , vol.30 , Issue.4 , pp. 451-462
    • Zhang, G.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.