메뉴 건너뛰기




Volumn 71, Issue 1-3, 2007, Pages 221-233

Flexible and efficient implementations of Bayesian independent component analysis

Author keywords

Empirical Bayes; Independent component analysis; Mean field methods; Variational methods

Indexed keywords

ALGORITHMS; BAYESIAN NETWORKS; COVARIANCE MATRIX; OPTIMIZATION; PARAMETERIZATION; VARIATIONAL TECHNIQUES;

EID: 35648952111     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2007.01.007     Document Type: Article
Times cited : (7)

References (27)
  • 1
    • 84898964031 scopus 로고    scopus 로고
    • A variational Bayesian framework for graphical models
    • Leen T., Dietterich T.G., and Tresp V. (Eds), MIT Press, Cambridge
    • Attias H. A variational Bayesian framework for graphical models. In: Leen T., Dietterich T.G., and Tresp V. (Eds). Advances in Neural Information Processing Systems vol. 12 (2000), MIT Press, Cambridge 209-215
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 209-215
    • Attias, H.1
  • 2
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • Bell A.J., and Sejnowski T.J. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7 6 (1995) 1129-1159
    • (1995) Neural Comput. , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 3
    • 35648958492 scopus 로고    scopus 로고
    • O. Bermond, J.F. Cardoso, Approximate likelihood for noisy mixtures, in: Proceedings of the ICA Conference, 1999.
  • 4
    • 0038132749 scopus 로고    scopus 로고
    • A variational method for learning sparse and overcomplete representations
    • Girolami M. A variational method for learning sparse and overcomplete representations. Neural Comput. 13 (2001) 2517-2532
    • (2001) Neural Comput. , vol.13 , pp. 2517-2532
    • Girolami, M.1
  • 5
    • 29044438682 scopus 로고    scopus 로고
    • T. Heskes, M. Opper, W. Wiegerinck, O. Winther, O. Zoeter, Approximate inference techniques with expectation constraints, J. Stat. Mech. Theory Exp. (2005) P11015.
  • 6
    • 0001387715 scopus 로고    scopus 로고
    • Mean-field approaches to independent component analysis
    • Hojen-Sorensen P., Winther O., and Hansen L.K. Mean-field approaches to independent component analysis. Neural Comput. 14 (2002) 889-918
    • (2002) Neural Comput. , vol.14 , pp. 889-918
    • Hojen-Sorensen, P.1    Winther, O.2    Hansen, L.K.3
  • 7
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks 10 (1999) 626-634
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 626-634
    • Hyvärinen, A.1
  • 8
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan M.I., Ghahramani Z., Jaakkola T.S., and Saul L.K. An introduction to variational methods for graphical models. Mach. Learn. 37 (1999) 183-233
    • (1999) Mach. Learn. , vol.37 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 9
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Leen T.K., Dietterich T.G., and Tresp V. (Eds)
    • Lee D.D., and Seung H.S. Algorithms for non-negative matrix factorization. In: Leen T.K., Dietterich T.G., and Tresp V. (Eds). Advances in Neural Information Processing Systems (NIPS) vol. 13 (2001) 556-562
    • (2001) Advances in Neural Information Processing Systems (NIPS) , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 12
    • 0002741125 scopus 로고    scopus 로고
    • Ensemble learning for blind source separation
    • Roberts S., and Everson R. (Eds), Cambridge University Press, Cambridge
    • Miskin J.W., and MacKay D.J.C. Ensemble learning for blind source separation. In: Roberts S., and Everson R. (Eds). Independent Component Analysis: Principles and Practice (2001), Cambridge University Press, Cambridge
    • (2001) Independent Component Analysis: Principles and Practice
    • Miskin, J.W.1    MacKay, D.J.C.2
  • 13
    • 35648929072 scopus 로고    scopus 로고
    • R.M. Neal, Geoffrey Hinton, A new view of the EM algorithm that justifies incremental and other variants, Technical Report, Department of Computer Science, University of Toronto, 1993.
  • 14
    • 35649015907 scopus 로고    scopus 로고
    • H.B. Nielsen, UCMINF-an algorithm for unconstrained nonlinear optimization, Technical Report IMM-Rep-2000-19, Technical University of Denmark, 2000.
  • 15
    • 34247192555 scopus 로고    scopus 로고
    • State-space models-from the EM algorithm to a gradient approach
    • Olsson R.K., Petersen K.B., and Lehn-Schioler T. State-space models-from the EM algorithm to a gradient approach. Neural Comput. 19 4 (2007)
    • (2007) Neural Comput. , vol.19 , Issue.4
    • Olsson, R.K.1    Petersen, K.B.2    Lehn-Schioler, T.3
  • 16
    • 0034320350 scopus 로고    scopus 로고
    • Gaussian processes for classification: mean field algorithms
    • Opper M., and Winther O. Gaussian processes for classification: mean field algorithms. Neural Comput. 12 (2000) 2655-2684
    • (2000) Neural Comput. , vol.12 , pp. 2655-2684
    • Opper, M.1    Winther, O.2
  • 17
    • 0035509916 scopus 로고    scopus 로고
    • Adaptive and self-averaging Thouless-Anderson-Palmer mean field theory for probabilistic modeling
    • Opper M., and Winther O. Adaptive and self-averaging Thouless-Anderson-Palmer mean field theory for probabilistic modeling. Phys. Rev. E 64 (2001) 056131
    • (2001) Phys. Rev. E , vol.64 , pp. 056131
    • Opper, M.1    Winther, O.2
  • 18
    • 29244438430 scopus 로고    scopus 로고
    • Expectation consistent approximate inference
    • Opper M., and Winther O. Expectation consistent approximate inference. J. Mach. Learn. Res. 6 (2005) 2177-2204
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 2177-2204
    • Opper, M.1    Winther, O.2
  • 19
    • 35648967907 scopus 로고    scopus 로고
    • K.B. Petersen, Mean field ICA, Ph.D. Thesis, Technical University of Denmark, 2005.
  • 20
    • 35648962186 scopus 로고    scopus 로고
    • K.B. Petersen, O. Winther, Explaining slow convergence of EM in low noise linear mixtures, Technical Report 2005-2, Informatics and Mathematical Modelling, Technical University of Denmark, 2005.
  • 21
    • 33645651121 scopus 로고    scopus 로고
    • K.B. Petersen, O. Winther, The EM algorithm in independent component analysis, in: International Conference on Acoustics, Speech, and Signal Processing, 2005.
  • 22
    • 22944474285 scopus 로고    scopus 로고
    • On the slow convergence of EM and VBEM in low-noise linear models
    • Petersen K.B., Winther O., and Hansen L.K. On the slow convergence of EM and VBEM in low-noise linear models. Neural Comput. 17 9 (2005)
    • (2005) Neural Comput. , vol.17 , Issue.9
    • Petersen, K.B.1    Winther, O.2    Hansen, L.K.3
  • 23
    • 1942452250 scopus 로고    scopus 로고
    • R. Salakhutdinov, S. Roweis, Adaptive overrelaxed bound optimization methods, in: Proceedings of International Conference on Machine Learning, ICML, International Conference on Machine Learning, ICML, 2003.
  • 24
    • 35649011753 scopus 로고    scopus 로고
    • H. Valpola, Bayesian ensemble learning for nonlinear factor analysis, Ph.D. Thesis, Helsinki University of Technology, Espoo, 2000.
  • 26
    • 34547601456 scopus 로고    scopus 로고
    • O. Winther, K.B. Petersen, Bayesian independent component analysis: variational methods and non-negative decompositions, Digital Signal Process, 2007, doi:10.1016.j.dsp.2007.01.003.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.