메뉴 건너뛰기




Volumn 129, Issue 5, 2007, Pages 1251-1275

Central sets and a non-commutative Roth theorem

Author keywords

[No Author keywords available]

Indexed keywords


EID: 35348959595     PISSN: 00029327     EISSN: None     Source Type: Journal    
DOI: 10.1353/ajm.2007.0031     Document Type: Article
Times cited : (22)

References (28)
  • 2
    • 84962999122 scopus 로고
    • Some topological semicommutative van der Waerden type theorems and their combinatorial consequences
    • V. Bergelson and N. Hindman, Some topological semicommutative van der Waerden type theorems and their combinatorial consequences, J. London Math. Soc. (2) 45 (1992), 385-403.
    • (1992) J. London Math. Soc. (2) , vol.45 , pp. 385-403
    • Bergelson, V.1    Hindman, N.2
  • 3
    • 0030554108 scopus 로고    scopus 로고
    • Polynomial extensions of van der Waerden's and Szemerédi's theorems
    • V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden's and Szemerédi's theorems. J. Amer. Math. Soc. 9 (1996), 725-753.
    • (1996) J. Amer. Math. Soc , vol.9 , pp. 725-753
    • Bergelson, V.1    Leibman, A.2
  • 5
    • 1542403813 scopus 로고    scopus 로고
    • Failure of Roth theorem for solvable groups of exponential growth
    • _, Failure of Roth theorem for solvable groups of exponential growth, Ergodic Theory Dynam. Syst. 24 (2004), 45-53.
    • (2004) Ergodic Theory Dynam. Syst , vol.24 , pp. 45-53
    • Bergelson, V.1    Leibman, A.2
  • 6
    • 22144449233 scopus 로고    scopus 로고
    • Polynomial Szemerédi theorems for countable modules over integral domains and finite fields
    • V. Bergelson, A. Leibman and R. McCutcheon, Polynomial Szemerédi theorems for countable modules over integral domains and finite fields, J. Anal. Math. 95 (2005), 243-296.
    • (2005) J. Anal. Math , vol.95 , pp. 243-296
    • Bergelson, V.1    Leibman, A.2    McCutcheon, R.3
  • 7
    • 0038026072 scopus 로고    scopus 로고
    • Recurrence for semigroup actions and a non-commutative Schur theorem
    • V. Bergelson and R. McCutcheon, Recurrence for semigroup actions and a non-commutative Schur theorem, Contemp. Math. 215 (1998), 205-222.
    • (1998) Contemp. Math , vol.215 , pp. 205-222
    • Bergelson, V.1    McCutcheon, R.2
  • 9
  • 10
    • 84972540617 scopus 로고
    • Distal transformation groups
    • R. Ellis, Distal transformation groups, Pacific J. Math. 8 (1958), 401-405.
    • (1958) Pacific J. Math , vol.8 , pp. 401-405
    • Ellis, R.1
  • 11
    • 51649169500 scopus 로고
    • Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions
    • H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Anal. Math. 31 (1977), 204-256.
    • (1977) J. Anal. Math , vol.31 , pp. 204-256
    • Furstenberg, H.1
  • 13
    • 51249184670 scopus 로고
    • An ergodic Szemerédi theorem for commuting transformations
    • H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Anal. Math. 34 (1978), 275-291.
    • (1978) J. Anal. Math , vol.34 , pp. 275-291
    • Furstenberg, H.1    Katznelson, Y.2
  • 14
    • 51249174873 scopus 로고
    • An ergodic Szemerédi theorem for IP-systems and combinatorial theory
    • _, An ergodic Szemerédi theorem for IP-systems and combinatorial theory, J. Anal. Math. 45 (1985), 117-168.
    • (1985) J. Anal. Math , vol.45 , pp. 117-168
    • Furstenberg, H.1    Katznelson, Y.2
  • 15
  • 16
    • 2942611377 scopus 로고    scopus 로고
    • Markov processes and Ramsey theory for trees
    • H. Furstenberg and B. Weiss, Markov processes and Ramsey theory for trees, Combin. Probab. Comput. 12 (2003), 547-563.
    • (2003) Combin. Probab. Comput , vol.12 , pp. 547-563
    • Furstenberg, H.1    Weiss, B.2
  • 17
    • 0035618488 scopus 로고    scopus 로고
    • A new proof of Szemerédi's theorem
    • W. T. Gowers, A new proof of Szemerédi's theorem, Geom. Funct. Anal. 11 (2001), 465-588.
    • (2001) Geom. Funct. Anal , vol.11 , pp. 465-588
    • Gowers, W.T.1
  • 19
    • 84871130932 scopus 로고    scopus 로고
    • The primes contain arbitrarily long arithmetic progressions
    • to appear
    • B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. Math, (to appear).
    • Ann. Math
    • Green, B.1    Tao, T.2
  • 21
    • 0032221791 scopus 로고    scopus 로고
    • Multiple recurrence theorem for measure preserving actions of a nilpotent group
    • A. Leibman, Multiple recurrence theorem for measure preserving actions of a nilpotent group, Geom. Funct. Anal. 8 (1998), 853-931.
    • (1998) Geom. Funct. Anal , vol.8 , pp. 853-931
    • Leibman, A.1
  • 22
    • 33645005241 scopus 로고    scopus 로고
    • The counting lemma for regular k-uniform hypergraphs
    • B. Nagle, V. Rödl, and M. Schacht, The counting lemma for regular k-uniform hypergraphs, Random Structures Algorithms 28 (2006), 113-179.
    • (2006) Random Structures Algorithms , vol.28 , pp. 113-179
    • Nagle, B.1    Rödl, V.2    Schacht, M.3
  • 23
    • 11144270528 scopus 로고    scopus 로고
    • Regularity lemma for k-uniform hypergraphs
    • V. Rödl and J. Skokan, Regularity lemma for k-uniform hypergraphs. Random Structures Algorithms 25 (2004), 1-42.
    • (2004) Random Structures Algorithms , vol.25 , pp. 1-42
    • Rödl, V.1    Skokan, J.2
  • 24
    • 0001109640 scopus 로고
    • Sur quelques ensembles d'entiers
    • K. Roth, Sur quelques ensembles d'entiers, C.R. Acad. Sci. Paris 234 (1952), 388-390.
    • (1952) C.R. Acad. Sci. Paris , vol.234 , pp. 388-390
    • Roth, K.1
  • 26
    • 0001549458 scopus 로고
    • On sets of integers containing no k elements in arithmetic progression
    • E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199-245.
    • (1975) Acta Arith , vol.27 , pp. 199-245
    • Szemerédi, E.1
  • 27
    • 58449095860 scopus 로고    scopus 로고
    • A correspondence principle between (hyper)graph theory and probability theory, and the (hyper)graph removal lemma
    • to appear
    • T. Tao, A correspondence principle between (hyper)graph theory and probability theory, and the (hyper)graph removal lemma, J. Anal. Math, (to appear).
    • J. Anal. Math
    • Tao, T.1
  • 28
    • 33751505144 scopus 로고
    • Beweis einer Baudetschen Vermutung
    • B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk. 15 (1927), 212-216.
    • (1927) Nieuw Arch. Wisk , vol.15 , pp. 212-216
    • van der Waerden, B.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.