-
1
-
-
32544435213
-
Minimal idempotents and ergodic Ramsey theory
-
Cambridge Univ. Press, Cambridge
-
V. Bergelson, Minimal idempotents and ergodic Ramsey theory, Topics in Dynamics and Ergodic Theory, London Math. Soc. Lecture Note Ser., vol. 310, Cambridge Univ. Press, Cambridge, 2003, pp. 8-39.
-
(2003)
Topics in Dynamics and Ergodic Theory, London Math. Soc. Lecture Note Ser
, vol.310
, pp. 8-39
-
-
Bergelson, V.1
-
2
-
-
84962999122
-
Some topological semicommutative van der Waerden type theorems and their combinatorial consequences
-
V. Bergelson and N. Hindman, Some topological semicommutative van der Waerden type theorems and their combinatorial consequences, J. London Math. Soc. (2) 45 (1992), 385-403.
-
(1992)
J. London Math. Soc. (2)
, vol.45
, pp. 385-403
-
-
Bergelson, V.1
Hindman, N.2
-
3
-
-
0030554108
-
Polynomial extensions of van der Waerden's and Szemerédi's theorems
-
V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden's and Szemerédi's theorems. J. Amer. Math. Soc. 9 (1996), 725-753.
-
(1996)
J. Amer. Math. Soc
, vol.9
, pp. 725-753
-
-
Bergelson, V.1
Leibman, A.2
-
5
-
-
1542403813
-
Failure of Roth theorem for solvable groups of exponential growth
-
_, Failure of Roth theorem for solvable groups of exponential growth, Ergodic Theory Dynam. Syst. 24 (2004), 45-53.
-
(2004)
Ergodic Theory Dynam. Syst
, vol.24
, pp. 45-53
-
-
Bergelson, V.1
Leibman, A.2
-
6
-
-
22144449233
-
Polynomial Szemerédi theorems for countable modules over integral domains and finite fields
-
V. Bergelson, A. Leibman and R. McCutcheon, Polynomial Szemerédi theorems for countable modules over integral domains and finite fields, J. Anal. Math. 95 (2005), 243-296.
-
(2005)
J. Anal. Math
, vol.95
, pp. 243-296
-
-
Bergelson, V.1
Leibman, A.2
McCutcheon, R.3
-
7
-
-
0038026072
-
Recurrence for semigroup actions and a non-commutative Schur theorem
-
V. Bergelson and R. McCutcheon, Recurrence for semigroup actions and a non-commutative Schur theorem, Contemp. Math. 215 (1998), 205-222.
-
(1998)
Contemp. Math
, vol.215
, pp. 205-222
-
-
Bergelson, V.1
McCutcheon, R.2
-
10
-
-
84972540617
-
Distal transformation groups
-
R. Ellis, Distal transformation groups, Pacific J. Math. 8 (1958), 401-405.
-
(1958)
Pacific J. Math
, vol.8
, pp. 401-405
-
-
Ellis, R.1
-
11
-
-
51649169500
-
Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions
-
H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Anal. Math. 31 (1977), 204-256.
-
(1977)
J. Anal. Math
, vol.31
, pp. 204-256
-
-
Furstenberg, H.1
-
13
-
-
51249184670
-
An ergodic Szemerédi theorem for commuting transformations
-
H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Anal. Math. 34 (1978), 275-291.
-
(1978)
J. Anal. Math
, vol.34
, pp. 275-291
-
-
Furstenberg, H.1
Katznelson, Y.2
-
14
-
-
51249174873
-
An ergodic Szemerédi theorem for IP-systems and combinatorial theory
-
_, An ergodic Szemerédi theorem for IP-systems and combinatorial theory, J. Anal. Math. 45 (1985), 117-168.
-
(1985)
J. Anal. Math
, vol.45
, pp. 117-168
-
-
Furstenberg, H.1
Katznelson, Y.2
-
16
-
-
2942611377
-
Markov processes and Ramsey theory for trees
-
H. Furstenberg and B. Weiss, Markov processes and Ramsey theory for trees, Combin. Probab. Comput. 12 (2003), 547-563.
-
(2003)
Combin. Probab. Comput
, vol.12
, pp. 547-563
-
-
Furstenberg, H.1
Weiss, B.2
-
17
-
-
0035618488
-
A new proof of Szemerédi's theorem
-
W. T. Gowers, A new proof of Szemerédi's theorem, Geom. Funct. Anal. 11 (2001), 465-588.
-
(2001)
Geom. Funct. Anal
, vol.11
, pp. 465-588
-
-
Gowers, W.T.1
-
19
-
-
84871130932
-
The primes contain arbitrarily long arithmetic progressions
-
to appear
-
B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. Math, (to appear).
-
Ann. Math
-
-
Green, B.1
Tao, T.2
-
20
-
-
0003984002
-
-
de Gruyter, Berlin
-
N. Hindman and D. Strauss, Algebra in the Stone-Čech Compactification. Theory and Applications, de Gruyter Exp. Math., vol. 27, de Gruyter, Berlin, 1998.
-
(1998)
Algebra in the Stone-Čech Compactification. Theory and Applications, de Gruyter Exp. Math
, vol.27
-
-
Hindman, N.1
Strauss, D.2
-
21
-
-
0032221791
-
Multiple recurrence theorem for measure preserving actions of a nilpotent group
-
A. Leibman, Multiple recurrence theorem for measure preserving actions of a nilpotent group, Geom. Funct. Anal. 8 (1998), 853-931.
-
(1998)
Geom. Funct. Anal
, vol.8
, pp. 853-931
-
-
Leibman, A.1
-
22
-
-
33645005241
-
The counting lemma for regular k-uniform hypergraphs
-
B. Nagle, V. Rödl, and M. Schacht, The counting lemma for regular k-uniform hypergraphs, Random Structures Algorithms 28 (2006), 113-179.
-
(2006)
Random Structures Algorithms
, vol.28
, pp. 113-179
-
-
Nagle, B.1
Rödl, V.2
Schacht, M.3
-
23
-
-
11144270528
-
Regularity lemma for k-uniform hypergraphs
-
V. Rödl and J. Skokan, Regularity lemma for k-uniform hypergraphs. Random Structures Algorithms 25 (2004), 1-42.
-
(2004)
Random Structures Algorithms
, vol.25
, pp. 1-42
-
-
Rödl, V.1
Skokan, J.2
-
24
-
-
0001109640
-
Sur quelques ensembles d'entiers
-
K. Roth, Sur quelques ensembles d'entiers, C.R. Acad. Sci. Paris 234 (1952), 388-390.
-
(1952)
C.R. Acad. Sci. Paris
, vol.234
, pp. 388-390
-
-
Roth, K.1
-
26
-
-
0001549458
-
On sets of integers containing no k elements in arithmetic progression
-
E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199-245.
-
(1975)
Acta Arith
, vol.27
, pp. 199-245
-
-
Szemerédi, E.1
-
27
-
-
58449095860
-
A correspondence principle between (hyper)graph theory and probability theory, and the (hyper)graph removal lemma
-
to appear
-
T. Tao, A correspondence principle between (hyper)graph theory and probability theory, and the (hyper)graph removal lemma, J. Anal. Math, (to appear).
-
J. Anal. Math
-
-
Tao, T.1
-
28
-
-
33751505144
-
Beweis einer Baudetschen Vermutung
-
B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk. 15 (1927), 212-216.
-
(1927)
Nieuw Arch. Wisk
, vol.15
, pp. 212-216
-
-
van der Waerden, B.L.1
|