-
2
-
-
22144458443
-
Ergodic theory and diophantine problems
-
[B2], in Topics in Symbolic Dynamics and Applications
-
[B2] V. Bergelson, Ergodic theory and Diophantine problems, in Topics in Symbolic Dynamics and Applications, London Math. Soc. Lecture Note Ser. 279 (2000), 167-205.
-
(2000)
London Math. Soc. Lecture Note Ser.
, vol.279
, pp. 167-205
-
-
Bergelson, V.1
-
4
-
-
0030554108
-
Polynomial extensions of van der Waerden's and Szemerédi's theorems
-
[BL1]
-
[BL1] V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden's and Szemerédi's theorems, J. Amer. Math. Soc. 9 (1996), 725-753.
-
(1996)
J. Amer. Math. Soc.
, vol.9
, pp. 725-753
-
-
Bergelson, V.1
Leibman, A.2
-
5
-
-
0033244835
-
Set-polynomials and polynomial extension of the Hales-Jewett theorem
-
[BL2]
-
[BL2] V. Bergelson and A. Leibman, Set-polynomials and polynomial extension of the Hales-Jewett theorem, Ann. of Math. (2) 150 (1999), 33-75.
-
(1999)
Ann. of Math. (2)
, vol.150
, pp. 33-75
-
-
Bergelson, V.1
Leibman, A.2
-
8
-
-
51649169500
-
Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions
-
[F1]
-
[F1] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204-256.
-
(1977)
J. Analyse Math.
, vol.31
, pp. 204-256
-
-
Furstenberg, H.1
-
10
-
-
51249184670
-
An ergodic Szemerédi theorem for commuting transformations
-
[FK1]
-
[FK1] H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math. 34 (1978), 275-291.
-
(1978)
J. Analyse Math.
, vol.34
, pp. 275-291
-
-
Furstenberg, H.1
Katznelson, Y.2
-
11
-
-
51249174873
-
An ergodic Szemerédi theorem for IP-systems and combinatorial theory
-
[FK2]
-
[FK2] H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for IP-systems and combinatorial theory, J. Analyse Math. 45 (1985), 117-168.
-
(1985)
J. Analyse Math.
, vol.45
, pp. 117-168
-
-
Furstenberg, H.1
Katznelson, Y.2
-
12
-
-
0001951630
-
A density version of the Hales-Jewett theorem
-
[FK3]
-
[FK3] H. Furstenberg and Y. Katznelson, A density version of the Hales-Jewett theorem, J. Analyse Math. 57 (1991), 64-119.
-
(1991)
J. Analyse Math.
, vol.57
, pp. 64-119
-
-
Furstenberg, H.1
Katznelson, Y.2
-
13
-
-
0035618488
-
A new proof of Szemerédi's theorem
-
[G]
-
[G] W. T. Gowers, A new proof of Szemerédi's theorem, Geom. Funct. Anal. 11 (2001), 465-588.
-
(2001)
Geom. Funct. Anal.
, vol.11
, pp. 465-588
-
-
Gowers, W.T.1
-
14
-
-
84871149721
-
-
[La], Ph.D. Thesis, The Ohio State University
-
[La] P. Larick, Ph.D. Thesis, The Ohio State University, 1998.
-
(1998)
-
-
Larick, P.1
-
15
-
-
0032221791
-
Multiple recurrence theorem for measure preserving actions of a nilpotent group
-
[Le]
-
[Le] A. Leibman, Multiple recurrence theorem for measure preserving actions of a nilpotent group, Geom. Funct. Anal. 8 (1998), 853-931.
-
(1998)
Geom. Funct. Anal.
, vol.8
, pp. 853-931
-
-
Leibman, A.1
-
16
-
-
0001549458
-
On sets of integers containing no k elements in arithmetic progression
-
[Sz]
-
[Sz] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199-245.
-
(1975)
Acta Arith.
, vol.27
, pp. 199-245
-
-
Szemerédi, E.1
-
17
-
-
84972488071
-
Extensions of ergodic group actions
-
[Z1]
-
[Z1] R. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), 373-409.
-
(1976)
Illinois J. Math.
, vol.20
, pp. 373-409
-
-
Zimmer, R.1
-
18
-
-
84972490999
-
Ergodic actions with generalized discrete spectrum
-
[Z2]
-
[Z2] R. Zimmer, Ergodic actions with generalized discrete spectrum, Illinois J. Math. 20 (1976), 555-588.
-
(1976)
Illinois J. Math.
, vol.20
, pp. 555-588
-
-
Zimmer, R.1
|