-
2
-
-
33748583768
-
A characterization of the (natural) graph properties testable with one-sided error
-
N. Alon and A. Shapira, A characterization of the (natural) graph properties testable with one-sided error, Proc. of FOCS, 2005, pp. 429-438.
-
(2005)
Proc. of FOCS
, pp. 429-438
-
-
Alon And, N.1
Shapira, A.2
-
4
-
-
0011319584
-
The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent
-
P. Erdös P. Frankl V. Rödl 1986 The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent Graphs Combin. 2 113 121
-
(1986)
Graphs Combin.
, vol.2
, pp. 113-121
-
-
Erdös, P.1
Frankl, P.2
Rödl, V.3
-
5
-
-
0003842418
-
The uniformity lemma for hypergraphs
-
P. Frankl V. Rödl 1992 The uniformity lemma for hypergraphs Graphs Combin. 8 309 312
-
(1992)
Graphs Combin.
, vol.8
, pp. 309-312
-
-
Frankl, P.1
Rödl, V.2
-
7
-
-
51649169500
-
Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions
-
H. Furstenberg 1977 Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions J. Analyse Math. 31 204 256
-
(1977)
J. Analyse Math.
, vol.31
, pp. 204-256
-
-
Furstenberg, H.1
-
9
-
-
51249184670
-
An ergodic Szemerédi theorem for commuting transformations
-
H. Furstenberg Y. Katznelson 1978 An ergodic Szemerédi theorem for commuting transformations J. Analyse Math. 34 275 291
-
(1978)
J. Analyse Math.
, vol.34
, pp. 275-291
-
-
Furstenberg, H.1
Katznelson, Y.2
-
11
-
-
33750906490
-
Herbrand's theorem and proof theory
-
North-Holland Amsterdam
-
J-Y. Girard, Herbrand's theorem and proof theory, Proceedings of the Herbrand Symposium (Marseilles, 1981), North-Holland, Amsterdam, 1982, pp. 29-38.
-
(1982)
Proceedings of the Herbrand Symposium (Marseilles, 1981)
, pp. 29-38
-
-
Girard, J.-Y.1
-
12
-
-
29744456824
-
Quasirandomness, counting and regularity for 3-uniform hypergraphs
-
T. Gowers 2006 Quasirandomness, counting and regularity for 3-uniform hypergraphs Combin. Probab. Comput. 15 143 184
-
(2006)
Combin. Probab. Comput.
, vol.15
, pp. 143-184
-
-
Gowers, T.1
-
14
-
-
84871130932
-
The primes contain arbitrarily long arithmetic progressions
-
to appear. See also arXiv:math/0404188
-
B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math., to appear. See also arXiv:math/0404188
-
Ann. of Math.
-
-
Green And, B.1
Tao, T.2
-
15
-
-
58449092273
-
-
Séminaire Bourbaki, Mars 2005, 57eme anné
-
B. Host, Progressions arithmétiques dans les nombres premiers (d'aprés B. Green and T. Tao), Séminaire Bourbaki, Mars 2005, 57eme année, 2004-2005, no. 944.
-
(2004)
Progressions Arithmétiques dans les Nombres Premiers (d'Aprés B. Green and T. Tao)
, Issue.944
-
-
Host, B.1
-
16
-
-
23444458042
-
Nonconventional ergodic averages and nilmanifolds
-
B. Host B. Kra 2005 Nonconventional ergodic averages and nilmanifolds Ann. of Math. (2) 161 397 488
-
(2005)
Ann. of Math. (2)
, vol.161
, pp. 397-488
-
-
Host, B.1
Kra, B.2
-
17
-
-
0000501688
-
Szemerédi's regularity lemma and its applications in graph theory
-
János Bolyai Math. Soc. Budapest
-
J. Komlós and M. Simonovits, Szemerédi's regularity lemma and its applications in graph theory, Combinatorics, Paul Erdos is Eighty, Vol. 2 (Keszthely, 1993), János Bolyai Math. Soc., Budapest, 1996, pp. 295-352.
-
(1996)
Combinatorics, Paul Erdos Is Eighty
, pp. 295-352
-
-
Komlós, J.1
Simonovits, M.2
-
18
-
-
32044462762
-
The Green-Tao Theorem on arithmetic progressions in the primes: An ergodic point of view
-
B. Kra 2006 The Green-Tao Theorem on arithmetic progressions in the primes: an ergodic point of view Bull. Amer. Math. Soc. (N.S.) 43 3 23
-
(2006)
Bull. Amer. Math. Soc. (N.S.)
, vol.43
, pp. 3-23
-
-
Kra, B.1
-
21
-
-
35348951983
-
Regular partitions of hypergraphs: Counting Lemmas
-
V. Rödl M. Schacht 2007 Regular partitions of hypergraphs: Counting Lemmas Combin. Probab. Comput. 16 887 901
-
(2007)
Combin. Probab. Comput.
, vol.16
, pp. 887-901
-
-
Rödl, V.1
Schacht, M.2
-
24
-
-
33644942504
-
Applications of the regularity lemma for uniform hypergraphs
-
V. Rödl J. Skokan 2006 Applications of the regularity lemma for uniform hypergraphs Random Structures Algorithms 28 180 194
-
(2006)
Random Structures Algorithms
, vol.28
, pp. 180-194
-
-
Rödl, V.1
Skokan, J.2
-
25
-
-
0000724028
-
Triple systems with no six points carrying three triangles
-
North-Holland Amsterdam-New York
-
I. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol II, North-Holland, Amsterdam-New York, 1978, pp. 939-945.
-
(1978)
Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976)
, pp. 939-945
-
-
Ruzsa, I.1
Szemerédi, E.2
-
26
-
-
29644448368
-
Note on a generalization of Roth's theorem
-
Springer Berlin
-
J. Solymosi, Note on a generalization of Roth's theorem, Discrete and Computational Geometry, Springer, Berlin, 2003, pp. 825-827.
-
(2003)
Discrete and Computational Geometry
, pp. 825-827
-
-
Solymosi, J.1
-
27
-
-
0006377805
-
On sets of integers containing no four elements in arithmetic progression
-
E. Szemerédi 1969 On sets of integers containing no four elements in arithmetic progression Acta Math. Acad. Sci. Hungar. 20 89 104
-
(1969)
Acta Math. Acad. Sci. Hungar.
, vol.20
, pp. 89-104
-
-
Szemerédi, E.1
-
28
-
-
0002572651
-
Regular partitions of graphs
-
CNRS Paris
-
E. Szemerédi, Regular partitions of graphs, Problémes Combinatoires et Théorie des Graphes, (Colloq. Internat. CNRS, Univ. Orsay, 1976), CNRS, Paris, 1978, pp. 399-401.
-
(1978)
Problémes Combinatoires et Théorie des Graphes, (Colloq. Internat. CNRS, Univ. Orsay, 1976)
, pp. 399-401
-
-
Szemerédi, E.1
-
29
-
-
34548717063
-
Szemerédi's regularity lemma revisited
-
T. Tao 2006 Szemerédi's regularity lemma revisited Contrib. Discrete Math. 1 8 28
-
(2006)
Contrib. Discrete Math.
, vol.1
, pp. 8-28
-
-
Tao, T.1
-
30
-
-
33750924975
-
A quantitative ergodic theory proof of Szemerédi's theorem
-
#R 99
-
T. Tao, A quantitative ergodic theory proof of Szemerédi's theorem, Electron. J. Combin. 13 (2006) #R 99.
-
(2006)
Electron. J. Combin.
, vol.13
-
-
Tao, T.1
-
31
-
-
33746620574
-
A variant of the hypergraph removal lemma
-
T. Tao 2006 A variant of the hypergraph removal lemma J. Combin. Theory Ser. A 113 1257 1280
-
(2006)
J. Combin. Theory Ser. A
, vol.113
, pp. 1257-1280
-
-
Tao, T.1
-
32
-
-
33847753436
-
The Gaussian primes contain arbitrarily shaped constellations
-
T. Tao 2006 The Gaussian primes contain arbitrarily shaped constellations J. Analyse Math. 99 109 176
-
(2006)
J. Analyse Math.
, vol.99
, pp. 109-176
-
-
Tao, T.1
-
34
-
-
84963018535
-
On certain sets of positive density
-
P. Varnavides 1959 On certain sets of positive density J. London Math. Soc. 34 358 360
-
(1959)
J. London Math. Soc.
, vol.34
, pp. 358-360
-
-
Varnavides, P.1
|