메뉴 건너뛰기




Volumn 103, Issue 1, 2007, Pages 1-45

A correspondence principle between (hyper)graph theory and probability theory, and the (hyper)graph removal lemma

Author keywords

[No Author keywords available]

Indexed keywords


EID: 58449095860     PISSN: 00217670     EISSN: 15658538     Source Type: Journal    
DOI: 10.1007/s11854-008-0001-0     Document Type: Article
Times cited : (22)

References (34)
  • 2
    • 33748583768 scopus 로고    scopus 로고
    • A characterization of the (natural) graph properties testable with one-sided error
    • N. Alon and A. Shapira, A characterization of the (natural) graph properties testable with one-sided error, Proc. of FOCS, 2005, pp. 429-438.
    • (2005) Proc. of FOCS , pp. 429-438
    • Alon And, N.1    Shapira, A.2
  • 4
    • 0011319584 scopus 로고
    • The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent
    • P. Erdös P. Frankl V. Rödl 1986 The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent Graphs Combin. 2 113 121
    • (1986) Graphs Combin. , vol.2 , pp. 113-121
    • Erdös, P.1    Frankl, P.2    Rödl, V.3
  • 5
    • 0003842418 scopus 로고
    • The uniformity lemma for hypergraphs
    • P. Frankl V. Rödl 1992 The uniformity lemma for hypergraphs Graphs Combin. 8 309 312
    • (1992) Graphs Combin. , vol.8 , pp. 309-312
    • Frankl, P.1    Rödl, V.2
  • 7
    • 51649169500 scopus 로고
    • Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions
    • H. Furstenberg 1977 Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions J. Analyse Math. 31 204 256
    • (1977) J. Analyse Math. , vol.31 , pp. 204-256
    • Furstenberg, H.1
  • 9
    • 51249184670 scopus 로고
    • An ergodic Szemerédi theorem for commuting transformations
    • H. Furstenberg Y. Katznelson 1978 An ergodic Szemerédi theorem for commuting transformations J. Analyse Math. 34 275 291
    • (1978) J. Analyse Math. , vol.34 , pp. 275-291
    • Furstenberg, H.1    Katznelson, Y.2
  • 12
    • 29744456824 scopus 로고    scopus 로고
    • Quasirandomness, counting and regularity for 3-uniform hypergraphs
    • T. Gowers 2006 Quasirandomness, counting and regularity for 3-uniform hypergraphs Combin. Probab. Comput. 15 143 184
    • (2006) Combin. Probab. Comput. , vol.15 , pp. 143-184
    • Gowers, T.1
  • 14
    • 84871130932 scopus 로고    scopus 로고
    • The primes contain arbitrarily long arithmetic progressions
    • to appear. See also arXiv:math/0404188
    • B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math., to appear. See also arXiv:math/0404188
    • Ann. of Math.
    • Green And, B.1    Tao, T.2
  • 16
    • 23444458042 scopus 로고    scopus 로고
    • Nonconventional ergodic averages and nilmanifolds
    • B. Host B. Kra 2005 Nonconventional ergodic averages and nilmanifolds Ann. of Math. (2) 161 397 488
    • (2005) Ann. of Math. (2) , vol.161 , pp. 397-488
    • Host, B.1    Kra, B.2
  • 17
    • 0000501688 scopus 로고    scopus 로고
    • Szemerédi's regularity lemma and its applications in graph theory
    • János Bolyai Math. Soc. Budapest
    • J. Komlós and M. Simonovits, Szemerédi's regularity lemma and its applications in graph theory, Combinatorics, Paul Erdos is Eighty, Vol. 2 (Keszthely, 1993), János Bolyai Math. Soc., Budapest, 1996, pp. 295-352.
    • (1996) Combinatorics, Paul Erdos Is Eighty , pp. 295-352
    • Komlós, J.1    Simonovits, M.2
  • 18
    • 32044462762 scopus 로고    scopus 로고
    • The Green-Tao Theorem on arithmetic progressions in the primes: An ergodic point of view
    • B. Kra 2006 The Green-Tao Theorem on arithmetic progressions in the primes: an ergodic point of view Bull. Amer. Math. Soc. (N.S.) 43 3 23
    • (2006) Bull. Amer. Math. Soc. (N.S.) , vol.43 , pp. 3-23
    • Kra, B.1
  • 21
    • 35348951983 scopus 로고    scopus 로고
    • Regular partitions of hypergraphs: Counting Lemmas
    • V. Rödl M. Schacht 2007 Regular partitions of hypergraphs: Counting Lemmas Combin. Probab. Comput. 16 887 901
    • (2007) Combin. Probab. Comput. , vol.16 , pp. 887-901
    • Rödl, V.1    Schacht, M.2
  • 24
    • 33644942504 scopus 로고    scopus 로고
    • Applications of the regularity lemma for uniform hypergraphs
    • V. Rödl J. Skokan 2006 Applications of the regularity lemma for uniform hypergraphs Random Structures Algorithms 28 180 194
    • (2006) Random Structures Algorithms , vol.28 , pp. 180-194
    • Rödl, V.1    Skokan, J.2
  • 26
    • 29644448368 scopus 로고    scopus 로고
    • Note on a generalization of Roth's theorem
    • Springer Berlin
    • J. Solymosi, Note on a generalization of Roth's theorem, Discrete and Computational Geometry, Springer, Berlin, 2003, pp. 825-827.
    • (2003) Discrete and Computational Geometry , pp. 825-827
    • Solymosi, J.1
  • 27
    • 0006377805 scopus 로고
    • On sets of integers containing no four elements in arithmetic progression
    • E. Szemerédi 1969 On sets of integers containing no four elements in arithmetic progression Acta Math. Acad. Sci. Hungar. 20 89 104
    • (1969) Acta Math. Acad. Sci. Hungar. , vol.20 , pp. 89-104
    • Szemerédi, E.1
  • 29
    • 34548717063 scopus 로고    scopus 로고
    • Szemerédi's regularity lemma revisited
    • T. Tao 2006 Szemerédi's regularity lemma revisited Contrib. Discrete Math. 1 8 28
    • (2006) Contrib. Discrete Math. , vol.1 , pp. 8-28
    • Tao, T.1
  • 30
    • 33750924975 scopus 로고    scopus 로고
    • A quantitative ergodic theory proof of Szemerédi's theorem
    • #R 99
    • T. Tao, A quantitative ergodic theory proof of Szemerédi's theorem, Electron. J. Combin. 13 (2006) #R 99.
    • (2006) Electron. J. Combin. , vol.13
    • Tao, T.1
  • 31
    • 33746620574 scopus 로고    scopus 로고
    • A variant of the hypergraph removal lemma
    • T. Tao 2006 A variant of the hypergraph removal lemma J. Combin. Theory Ser. A 113 1257 1280
    • (2006) J. Combin. Theory Ser. A , vol.113 , pp. 1257-1280
    • Tao, T.1
  • 32
    • 33847753436 scopus 로고    scopus 로고
    • The Gaussian primes contain arbitrarily shaped constellations
    • T. Tao 2006 The Gaussian primes contain arbitrarily shaped constellations J. Analyse Math. 99 109 176
    • (2006) J. Analyse Math. , vol.99 , pp. 109-176
    • Tao, T.1
  • 34
    • 84963018535 scopus 로고
    • On certain sets of positive density
    • P. Varnavides 1959 On certain sets of positive density J. London Math. Soc. 34 358 360
    • (1959) J. London Math. Soc. , vol.34 , pp. 358-360
    • Varnavides, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.