메뉴 건너뛰기




Volumn , Issue , 2007, Pages 283-292

Hybrid transition density approximation for efficient recursive prediction of nonlinear dynamic systems

Author keywords

Hybrid density; Nonlinear prediction; Probability density approximation; Recursive bayesian estimation

Indexed keywords

APPROXIMATION THEORY; BAYESIAN NETWORKS; INFORMATION FUSION; NONLINEAR SYSTEMS; PROBABILITY DENSITY FUNCTION; RECURSIVE FUNCTIONS; SCHEDULING;

EID: 35348914822     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1236360.1236398     Document Type: Conference Paper
Times cited : (5)

References (22)
  • 1
    • 0015385037 scopus 로고
    • Nonlinear Bayesian Estimation using Gaussian Sum Approximation
    • August
    • D. L. Alspach and H. W. Sorenson. Nonlinear Bayesian Estimation using Gaussian Sum Approximation. IEEE Transactions on Automatic Control, 17(4):439-448, August 1972.
    • (1972) IEEE Transactions on Automatic Control , vol.17 , Issue.4 , pp. 439-448
    • Alspach, D.L.1    Sorenson, H.W.2
  • 2
    • 0036475447 scopus 로고    scopus 로고
    • A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking
    • February
    • M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal Processing, 50(2):174-188, February 2002.
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, M.S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 3
    • 0000363784 scopus 로고
    • Minimum Distance Estimators for Location and Goodness of Fit
    • D.D. Boos. Minimum Distance Estimators for Location and Goodness of Fit. Journal of the American Statistical association, 76(375):663-670, 1981.
    • (1981) Journal of the American Statistical association , vol.76 , Issue.375 , pp. 663-670
    • Boos, D.D.1
  • 6
    • 0033737762 scopus 로고    scopus 로고
    • Nonlinear Filtering via Generalized Edgeworth Series and Gauss-Hermite Quadrature
    • S. Challa, Y. Bar-Shalom, and V. Krishnamurthy. Nonlinear Filtering via Generalized Edgeworth Series and Gauss-Hermite Quadrature. IEEE Transactions on Signal Processing, 48(6):1816-1820, 2000.
    • (2000) IEEE Transactions on Signal Processing , vol.48 , Issue.6 , pp. 1816-1820
    • Challa, S.1    Bar-Shalom, Y.2    Krishnamurthy, V.3
  • 7
    • 0042827602 scopus 로고    scopus 로고
    • U. D. Hanebeck, K. Briechle, and A. Rauh. Progressive Bayes: A New Framework for Nonlinear State Estimation. In Proceedings of SPIE, 5099, pages 256-267. AeroSense Symposium, 2003.
    • U. D. Hanebeck, K. Briechle, and A. Rauh. Progressive Bayes: A New Framework for Nonlinear State Estimation. In Proceedings of SPIE, volume 5099, pages 256-267. AeroSense Symposium, 2003.
  • 9
    • 84950426173 scopus 로고
    • Recent developments in nonparametric density estimation
    • March
    • A. J. Izenman. Recent developments in nonparametric density estimation. Journal of the American Statistical Association, 86(413):205-224, March 1991.
    • (1991) Journal of the American Statistical Association , vol.86 , Issue.413 , pp. 205-224
    • Izenman, A.J.1
  • 10
    • 21244437999 scopus 로고    scopus 로고
    • Unscented Filtering and Nonlinear Estimation
    • S. J. Julier and J. K. Uhlmann. Unscented Filtering and Nonlinear Estimation. In Proceedings of the IEEE, volume 92, pages 401-422, 2004.
    • (2004) Proceedings of the IEEE , vol.92 , pp. 401-422
    • Julier, S.J.1    Uhlmann, J.K.2
  • 15
    • 46449131209 scopus 로고    scopus 로고
    • V. Philomin. R. Duraiswami, and L. Davis. Quasi-Random Sampling for Condensation. In ser. Lecture Notes in Computer Science, 1843/2000, chapter Computer Vision, pages 134-149. Springer Berlin / Heidelberg, 2000.
    • V. Philomin. R. Duraiswami, and L. Davis. Quasi-Random Sampling for Condensation. In ser. Lecture Notes in Computer Science, volume 1843/2000, chapter Computer Vision, pages 134-149. Springer Berlin / Heidelberg, 2000.
  • 17
    • 35348864141 scopus 로고    scopus 로고
    • Efficient Recursive Prediction of Stochastic Nonlinear Systems Based on Dirac Mixture Approximations
    • O. C. Schrempf and U. D. Hanebeck. Efficient Recursive Prediction of Stochastic Nonlinear Systems Based on Dirac Mixture Approximations. In Proceedings of the American Control Conference, 2007.
    • (2007) Proceedings of the American Control Conference
    • Schrempf, O.C.1    Hanebeck, U.D.2
  • 22
    • 85032751029 scopus 로고    scopus 로고
    • Information-Driven Dynamic Sensor Collaboration
    • March
    • F. Zhao, J. Shin, and J. Reich. Information-Driven Dynamic Sensor Collaboration. IEEE Signal Processing Magazine, 19:61-72, March 2002.
    • (2002) IEEE Signal Processing Magazine , vol.19 , pp. 61-72
    • Zhao, F.1    Shin, J.2    Reich, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.