메뉴 건너뛰기




Volumn 2709, Issue , 2003, Pages 346-355

A modular multiple classifier system for the detection of intrusions in computer networks

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER CRIME; COMPUTER NETWORKS; MERCURY (METAL); NETWORK SECURITY; PATTERN RECOGNITION;

EID: 27244444099     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-44938-8_35     Document Type: Article
Times cited : (15)

References (22)
  • 1
    • 84996432821 scopus 로고    scopus 로고
    • Allen J., Christie A., Fithen W., McHugh J., Pickel J., Storner E., 2000. State of the Practice of Intrusion Detection Technologies. Tech. Rep. CMU/SEI-99-TR-028, Software Engineering Institute, Carnegie Mellon University.
  • 2
    • 84928016636 scopus 로고    scopus 로고
    • The Base-Rate Fallacy and the Difficulty of Intrusion Detection
    • Axelsson S., 2000. The Base-Rate Fallacy and the Difficulty of Intrusion Detection. ACM Trans. on Information and System Security 3(3), 186-205.
    • (2000) ACM Trans. on Information and System Security , vol.3 , Issue.3 , pp. 186-205
    • Axelsson, S.1
  • 3
    • 0031644250 scopus 로고    scopus 로고
    • Bonifacio J.M., Cansian A.M., de Carvalho A.C.P.L.F., Moreira E.S., 1998. Neural Networks applied in intrusion detection systems. Proc. of the IEEE World congress on Comp. Intell. (WCCI '98).
  • 4
    • 84996447487 scopus 로고    scopus 로고
    • Cannady J., 2000. An adaptive neural network approach to intrusion detection and response. PhD Thesis, School of Comp. and Inf. Sci., Nova Southeastern University.
  • 6
    • 0038428854 scopus 로고    scopus 로고
    • Results of the KDD'99 Classifier Learning
    • Elkan C., 2000. Results of the KDD'99 Classifier Learning. ACM SIGKDD Explorations 1, 63-64.
    • (2000) ACM SIGKDD Explorations , vol.1 , pp. 63-64
    • Elkan, C.1
  • 7
    • 85084160308 scopus 로고    scopus 로고
    • Ghosh A.K., Schwartzbard A., 1999. A Study in Using Neural Networks for Anomaly and Misuse Detection. Proc. of the USENIX Security Symposium, August 23-26, 1999, Washington, USA.
  • 8
    • 0034072495 scopus 로고    scopus 로고
    • Combination of Neural and Statistical Algorithms for Supervised Classification of Remote-Sensing Images
    • Giacinto G., Roli F., Bruzzone L., 2001. Combination of Neural and Statistical Algorithms for Supervised Classification of Remote-Sensing Images. Pattern Recognition Letters, 21(5), 385-397.
    • (2001) Pattern Recognition Letters , vol.21 , Issue.5 , pp. 385-397
    • Giacinto, G.1    Roli, F.2    Bruzzone, L.3
  • 9
    • 0038330235 scopus 로고    scopus 로고
    • Giacinto G., Roli F., Didaci L., 2003. Fusion of multiple classifiers for intrusion detection in computer networks. Pattern Recognition Letters (in press).
  • 11
    • 0034830461 scopus 로고    scopus 로고
    • Decision Templates for Multiple Classifier Fusion
    • Kuncheva L.I., Bezdek J.C., Duin R.P.W., 2001. Decision Templates for Multiple Classifier Fusion. Pattern Recognition 34(2), 299-314.
    • (2001) Pattern Recognition , vol.34 , Issue.2 , pp. 299-314
    • Kuncheva, L.I.1    Bezdek, J.C.2    Duin, R.P.W.3
  • 13
    • 84885774862 scopus 로고    scopus 로고
    • A framework for constructing features and models for intrusion detection systems
    • Lee W., Stolfo S.J., 2000. A framework for constructing features and models for intrusion detection systems. ACM Trans. on Inform. and System Security 3(4), 227-261.
    • (2000) ACM Trans. on Inform. and System Security , vol.3 , Issue.4 , pp. 227-261
    • Lee, W.1    Stolfo, S.J.2
  • 14
    • 0034270431 scopus 로고    scopus 로고
    • Defending Yourself: The Role of Intrusion Detection Systems
    • Sept./Oct. 2000
    • McHugh J., Christie A., Allen J., 2000. Defending Yourself: The Role of Intrusion Detection Systems. IEEE Software, Sept./Oct. 2000, 42-51.
    • (2000) IEEE Software , pp. 42-51
    • McHugh, J.1    Christie, A.2    Allen, J.3
  • 15
    • 84996434142 scopus 로고    scopus 로고
    • Northcutt S., Cooper M., Fearnow M., Frederick K., 2001. Intrusion Signatures and Analysis. New Riders Pub.
  • 16
    • 84996434141 scopus 로고    scopus 로고
    • nded). New Riders Pub.
  • 17
    • 84996453142 scopus 로고    scopus 로고
    • Proctor P.E., 2001. The Practical Intrusion Detection Handbook. Prentice Hall.
  • 18
    • 84947596693 scopus 로고    scopus 로고
    • Analysis of Linear and Order Statistics Combiners for Fusion of Imbalanced Classifiers. Multiple Classifier Systems
    • Roli and Kittler, Eds. Springer-Verlag
    • Roli F., Fumera G., 2002. Analysis of Linear and Order Statistics Combiners for Fusion of Imbalanced Classifiers. Multiple Classifier Systems, Roli and Kittler, Eds. Springer-Verlag, Lecture Notes in Computer Science, vol. 2364, 252-261.
    • (2002) Lecture Notes in Computer Science , vol.2364 , pp. 252-261
    • Roli, F.1    Fumera, G.2
  • 19
    • 84898944587 scopus 로고    scopus 로고
    • Intrusion Detection with Neural Networks
    • M. Jordan et al., Eds., Cambridge, MA: MIT Press
    • Ryan J., Lin M.J., Miikkulainen R., 1998. Intrusion Detection with Neural Networks. In: Advances in Neural Information Processing Systems 10, M. Jordan et al., Eds., Cambridge, MA: MIT Press, 943-949.
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 943-949
    • Ryan, J.1    Lin, M.J.2    Miikkulainen, R.3
  • 20
    • 84996459669 scopus 로고    scopus 로고
    • Sharkey A.J.C., 1999. Combining Artificial Neural Nets. Springer.
  • 21
    • 0026860706 scopus 로고
    • Methods for combining multiple classifiers and their applications to handwriting recognition
    • Xu L., Krzyzak A., Suen C.Y., 1992. Methods for combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. Systems, Man and Cybernetics 22, 418-435.
    • (1992) IEEE Trans. Systems, Man and Cybernetics , vol.22 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 22
    • 0037209446 scopus 로고    scopus 로고
    • Host-based intrusion detection using dynamic and static behavioral models
    • Yeung D.-J., Ding Y., 2003. Host-based intrusion detection using dynamic and static behavioral models. Patter Recognition 36, 229-243.
    • (2003) Patter Recognition , vol.36 , pp. 229-243
    • Yeung, D.-J.1    Ding, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.