-
1
-
-
0025725905
-
Instance-based learning algorithms
-
Aha, D. W., D. Kibler, and M. K. Albert, 1991. Instance-based learning algorithms. Machine Learning 6(1):37-66.
-
(1991)
Machine Learning
, vol.6
, Issue.1
, pp. 37-66
-
-
Aha, D.W.1
Kibler, D.2
Albert, M.K.3
-
5
-
-
0036888791
-
Using similarity criteria to make issue tradeoffs in auto mated negotiations
-
Faratin, T., C. Sierra, and N. R. Jennings, 2002. Using similarity criteria to make issue tradeoffs in auto mated negotiations. Artificial Intelligence 142(2):205-237.
-
(2002)
Artificial Intelligence
, vol.142
, Issue.2
, pp. 205-237
-
-
Faratin, T.1
Sierra, C.2
Jennings, N.R.3
-
7
-
-
33749618778
-
Learning with drift detection
-
Proc. of the 17th Brazilian Symposium on Artificial Intelligence SBIA'04, Springer
-
Gama, J., P. Medas, G. Castillo, and P. Rodrigues. 2004. Learning with drift detection. In Proc. of the 17th Brazilian Symposium on Artificial Intelligence (SBIA'04) LNAI 3171, pages 286-295. Springer.
-
(2004)
LNAI
, vol.3171
, pp. 286-295
-
-
Gama, J.1
Medas, P.2
Castillo, G.3
Rodrigues, P.4
-
8
-
-
84867959178
-
Multi-issue negotiation processes by evolutionary simulation, validation and social extensions
-
Gerding E. and D. Bragt. 2003. Multi-issue negotiation processes by evolutionary simulation, validation and social extensions. Computation Economics 2(1): 39-63.
-
(2003)
Computation Economics
, vol.2
, Issue.1
, pp. 39-63
-
-
Gerding, E.1
Bragt, D.2
-
9
-
-
0002896413
-
Tracking drifting concepts by minimizing disagreements
-
Helmbold, D. P. and P. M. Long. 1994. Tracking drifting concepts by minimizing disagreements. Machine Learning 14(1):27-46.
-
(1994)
Machine Learning
, vol.14
, Issue.1
, pp. 27-46
-
-
Helmbold, D.P.1
Long, P.M.2
-
11
-
-
0009300196
-
Adaptive information filtering: Learning in the presence of concept drifts
-
Klinkenberg, R. and I. Renz. 1998. Adaptive information filtering: Learning in the presence of concept drifts. AAAI-98/ICML-98, Vol. 1, pp. 33-40.
-
(1998)
AAAI-98/ICML-98
, vol.1
, pp. 33-40
-
-
Klinkenberg, R.1
Renz, I.2
-
12
-
-
31844453033
-
Using additive expert ensembles to cope with concept drift
-
Proceedings of the 22nd International. Conference on Machine Learning, Germany, Springer Berlin
-
Kolter, J. Z., and M. A. Maloof. 2005. Using additive expert ensembles to cope with concept drift. In Proceedings of the 22nd International. Conference on Machine Learning, Germany. Lecture Notes in Computer Science, Volume 2366, Springer Berlin.
-
(2005)
Lecture Notes in Computer Science
, vol.2366
-
-
Kolter, J.Z.1
Maloof, M.A.2
-
17
-
-
85018095293
-
Beyond incremental processing: Tracking concept drift
-
AAAI Press
-
Schlimmer, J. and R. Granger. 1986. Beyond incremental processing: Tracking concept drift. In Proceedings of the 5th AAAI Conference, pages 502-507. AAAI Press.
-
(1986)
Proceedings of the 5th AAAI Conference
, pp. 502-507
-
-
Schlimmer, J.1
Granger, R.2
-
18
-
-
22544451786
-
Learning Concept Drift with a Committee of Decision Trees
-
University of Texas, Department of Computer Science, Technical Report AI-03-302, September
-
Stanley, K. O. 2003. Learning Concept Drift with a Committee of Decision Trees, University of Texas, Department of Computer Science, Technical Report AI-03-302, September.
-
(2003)
-
-
Stanley, K.O.1
-
19
-
-
26444562687
-
The problem of concept drift: Definitions and related work
-
Technical Report TCO-CS-2004-15, Department of Computer Science, Trinity College Dublin, Ireland
-
Tsymbal, A. 2004. The problem of concept drift: Definitions and related work. Technical Report TCO-CS-2004-15, Department of Computer Science, Trinity College Dublin, Ireland, 2004.
-
(2004)
-
-
Tsymbal, A.1
-
20
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
Widmer, G. and M. Kubat. 1996. Learning in the presence of concept drift and hidden contexts. Machine Learning 23 (1):69-101.
-
(1996)
Machine Learning
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
|