-
1
-
-
0042991275
-
-
Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Nature 2003, 424, 654-657.
-
(2003)
Nature
, vol.424
, pp. 654-657
-
-
Javey, A.1
Guo, J.2
Wang, Q.3
Lundstrom, M.4
Dai, H.J.5
-
3
-
-
0034723410
-
-
Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.; Cho, K. J.; Dai, H. J. Science 2000, 287, 622-625.
-
(2000)
Science
, vol.287
, pp. 622-625
-
-
Kong, J.1
Franklin, N.R.2
Zhou, C.W.3
Chapline, M.G.4
Peng, S.5
Cho, K.J.6
Dai, H.J.7
-
5
-
-
15544374415
-
-
Snow, E. S.; Perkins, F. K.; Houser, E. J.; Badescu, S. C.; Reinecke, T. L. Science 2005, 307, 1942-1945.
-
(2005)
Science
, vol.307
, pp. 1942-1945
-
-
Snow, E.S.1
Perkins, F.K.2
Houser, E.J.3
Badescu, S.C.4
Reinecke, T.L.5
-
6
-
-
11444250241
-
-
Bekyarova, E.; Davis, M.; Burch, T.; Itkis, M. E.; Zhao, B.; Sunshine, S.; Haddon, R. C. J. Phys. Chem. B 2004, 108, 19717-19720.
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 19717-19720
-
-
Bekyarova, E.1
Davis, M.2
Burch, T.3
Itkis, M.E.4
Zhao, B.5
Sunshine, S.6
Haddon, R.C.7
-
7
-
-
0037741962
-
-
Misewich, J. A.; Martel, R.; Avouris, P.; Tsang, J. C.; Heinze, S.; Tersoff, J. Science 2003, 300, 783-786.
-
(2003)
Science
, vol.300
, pp. 783-786
-
-
Misewich, J.A.1
Martel, R.2
Avouris, P.3
Tsang, J.C.4
Heinze, S.5
Tersoff, J.6
-
8
-
-
0035806145
-
-
Chen, X. Q.; Saito, T.; Yamada, H.; Matsushige, K. Appl. Phys. Lett. 2001, 78, 3714-3716.
-
(2001)
Appl. Phys. Lett
, vol.78
, pp. 3714-3716
-
-
Chen, X.Q.1
Saito, T.2
Yamada, H.3
Matsushige, K.4
-
9
-
-
0142043359
-
-
Krupke, R.; Hennrich, F.; Weber, H. B.; Kappes, M. M.; von Lohneysen, H. Nano Lett. 2003, 3, 1019-1023.
-
(2003)
Nano Lett
, vol.3
, pp. 1019-1023
-
-
Krupke, R.1
Hennrich, F.2
Weber, H.B.3
Kappes, M.M.4
von Lohneysen, H.5
-
11
-
-
0000769720
-
-
Smith, B. W.; Benes, Z.; Luzzi, D. E.; Fischer, J. E.; Walters, D. A.; Casavant, M. J.; Schmidt, J.; Smalley, R. E. Appl. Phys. Lett. 2000, 77, 663-665.
-
(2000)
Appl. Phys. Lett
, vol.77
, pp. 663-665
-
-
Smith, B.W.1
Benes, Z.2
Luzzi, D.E.3
Fischer, J.E.4
Walters, D.A.5
Casavant, M.J.6
Schmidt, J.7
Smalley, R.E.8
-
12
-
-
33846841017
-
-
O'Shea, J. N.; Taylor, J. B.; Swarbrick, J. C.; Magnano, G.; Mayor, L. C.; Schulte, K. Nanotechnology 2007, 18, 035707.
-
(2007)
Nanotechnology
, vol.18
, pp. 035707
-
-
O'Shea, J.N.1
Taylor, J.B.2
Swarbrick, J.C.3
Magnano, G.4
Mayor, L.C.5
Schulte, K.6
-
13
-
-
31544471732
-
-
McLean, R. S.; Huang, X. Y.; Khripin, C.; Jagota, A.; Zheng, M. Nano Lett. 2006, 6, 55-60.
-
(2006)
Nano Lett
, vol.6
, pp. 55-60
-
-
McLean, R.S.1
Huang, X.Y.2
Khripin, C.3
Jagota, A.4
Zheng, M.5
-
14
-
-
0041822001
-
-
Rao, S. G.; Huang, L.; Setyawan, W.; Hong, S. H. Nature 2003, 425, 36-37.
-
(2003)
Nature
, vol.425
, pp. 36-37
-
-
Rao, S.G.1
Huang, L.2
Setyawan, W.3
Hong, S.H.4
-
15
-
-
50549101330
-
-
Lee, M.; Im, J.; Lee, B. Y.; Myung, S.; Kang, J.; Huang, L.; Kwon, Y. K.; Hong, S. Nat. Nanotechnol. 2006, 1, 66-71.
-
(2006)
Nat. Nanotechnol
, vol.1
, pp. 66-71
-
-
Lee, M.1
Im, J.2
Lee, B.Y.3
Myung, S.4
Kang, J.5
Huang, L.6
Kwon, Y.K.7
Hong, S.8
-
16
-
-
33144462900
-
-
Wang, Y.; Maspoch, D.; Zou, S.; Schatz, G. C.; Smalley, R. E.; Mirkin, C. A. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 2026-2031.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A
, vol.103
, pp. 2026-2031
-
-
Wang, Y.1
Maspoch, D.2
Zou, S.3
Schatz, G.C.4
Smalley, R.E.5
Mirkin, C.A.6
-
17
-
-
0038521137
-
-
Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; McLean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. Nat. Mater. 2003, 2, 338-342.
-
(2003)
Nat. Mater
, vol.2
, pp. 338-342
-
-
Zheng, M.1
Jagota, A.2
Semke, E.D.3
Diner, B.A.4
McLean, R.S.5
Lustig, S.R.6
Richardson, R.E.7
Tassi, N.G.8
-
18
-
-
4143064565
-
-
It is known that individual nanotubes can be suspended in organic solvent with extensive functionalization Liang, F, Sadana, A. K, Peera, A, Chattopadhyay, J, Gu, J, Hauge, R. H, Billups, W. E. Nano Lett. 2004, 4, 1257-1260, Such heavily functionalized SWNT have limited utility for electronic applications and historically have been excluded from studies of device fabrication from solution processing. It is also uncertain if the functionalized nanotubes will show a similar interaction with the patterned SAM on surface
-
It is known that individual nanotubes can be suspended in organic solvent with extensive functionalization (Liang, F.; Sadana, A. K.; Peera, A.; Chattopadhyay, J.; Gu, J.; Hauge, R. H.; Billups, W. E. Nano Lett. 2004, 4, 1257-1260). Such heavily functionalized SWNT have limited utility for electronic applications and historically have been excluded from studies of device fabrication from solution processing. It is also uncertain if the functionalized nanotubes will show a similar interaction with the patterned SAM on surface.
-
-
-
-
19
-
-
32244439234
-
-
Cao, Q.; Hur, S.-H.; Zhu, Z.-T.; Sun, Y. G.; Wang, C.-J.; Meitl, M. A.; Shim, M.; Rogers, J. A. Adv. Mater. 2006, 18, 304-309.
-
(2006)
Adv. Mater
, vol.18
, pp. 304-309
-
-
Cao, Q.1
Hur, S.-H.2
Zhu, Z.-T.3
Sun, Y.G.4
Wang, C.-J.5
Meitl, M.A.6
Shim, M.7
Rogers, J.A.8
-
20
-
-
33646074337
-
-
Kocabas, C.; Shim, M.; Rogers, J. A. J. Am. Chem. Soc. 2006, 128, 4540-4541.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 4540-4541
-
-
Kocabas, C.1
Shim, M.2
Rogers, J.A.3
-
21
-
-
30444459511
-
-
Duggal, R.; Hussain, F.; Pasquali, M. Adv. Mater. 2006, 18, 29-34.
-
(2006)
Adv. Mater
, vol.18
, pp. 29-34
-
-
Duggal, R.1
Hussain, F.2
Pasquali, M.3
-
22
-
-
13444256520
-
-
Naeemi, A.; Sarvari, R.; Meindl, J. D. IEEE Electron Device Lett. 2005, 26, 84-86.
-
(2005)
IEEE Electron Device Lett
, vol.26
, pp. 84-86
-
-
Naeemi, A.1
Sarvari, R.2
Meindl, J.D.3
-
24
-
-
0037109781
-
-
Cachile, M.; Benichou, O.; Cazabat, A. M. Langmuir 2002, 18, 7985-7990.
-
(2002)
Langmuir
, vol.18
, pp. 7985-7990
-
-
Cachile, M.1
Benichou, O.2
Cazabat, A.M.3
-
25
-
-
26444492718
-
-
Dugas, V.; Broutin, J.; Souteyrand, E. Langmuir 2005, 21, 9130-9136.
-
(2005)
Langmuir
, vol.21
, pp. 9130-9136
-
-
Dugas, V.1
Broutin, J.2
Souteyrand, E.3
-
26
-
-
3442900501
-
-
Yu, H. Z.; Soolaman, D. M.; Rowe, A. W.; Banks, J. T. ChemPhysChem 2004, 5, 1035-1038.
-
(2004)
ChemPhysChem
, vol.5
, pp. 1035-1038
-
-
Yu, H.Z.1
Soolaman, D.M.2
Rowe, A.W.3
Banks, J.T.4
-
27
-
-
0033204631
-
-
Erbil, H. Y.; McHale, G.; Rowan, S. M.; Newton, M. I. Langmuir 1999, 15, 7378-7385.
-
(1999)
Langmuir
, vol.15
, pp. 7378-7385
-
-
Erbil, H.Y.1
McHale, G.2
Rowan, S.M.3
Newton, M.I.4
-
28
-
-
0030732736
-
-
Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Nature 1997, 389, 827-829.
-
(1997)
Nature
, vol.389
, pp. 827-829
-
-
Deegan, R.D.1
Bakajin, O.2
Dupont, T.F.3
Huber, G.4
Nagel, S.R.5
Witten, T.A.6
-
29
-
-
0034224710
-
-
Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Phys. Rev. E 2000, 62, 756-765.
-
(2000)
Phys. Rev. E
, vol.62
, pp. 756-765
-
-
Deegan, R.D.1
Bakajin, O.2
Dupont, T.F.3
Huber, G.4
Nagel, S.R.5
Witten, T.A.6
-
32
-
-
0345015899
-
-
Kimura, M.; Misner, M. J.; Xu, T.; Kim, S. H.; Russell, T. P. Langmuir 2003, 19, 9910-9913.
-
(2003)
Langmuir
, vol.19
, pp. 9910-9913
-
-
Kimura, M.1
Misner, M.J.2
Xu, T.3
Kim, S.H.4
Russell, T.P.5
-
33
-
-
34547842779
-
-
Smalyukh, I.I.; Zribi, O. V.; Butler, J. C.; Lavrentovich, O. D.; Wong, G. C. L. Phys. Rev. Lett. 2006, 96, 177801.
-
(2006)
Phys. Rev. Lett
, vol.96
, pp. 177801
-
-
Smalyukh, I.I.1
Zribi, O.V.2
Butler, J.C.3
Lavrentovich, O.D.4
Wong, G.C.L.5
-
34
-
-
33645645268
-
-
Bigioni, T. P.; Lin, X. M.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M. Nat. Mater. 2006, 5, 265-270.
-
(2006)
Nat. Mater
, vol.5
, pp. 265-270
-
-
Bigioni, T.P.1
Lin, X.M.2
Nguyen, T.T.3
Corwin, E.I.4
Witten, T.A.5
Jaeger, H.M.6
-
35
-
-
0029370682
-
-
Xia, Y. N.; Mrksich, M.; Kim, E.; Whitesides, G. M. J. Am. Chem. Soc. 1995, 117, 9576-9577.
-
(1995)
J. Am. Chem. Soc
, vol.117
, pp. 9576-9577
-
-
Xia, Y.N.1
Mrksich, M.2
Kim, E.3
Whitesides, G.M.4
-
36
-
-
34948891211
-
-
We attribute the difference between pure water and water/surfactant mixture to the differences in their surface tension. Surface tension directly determines the contact angle of drops. The large value of surface tension of water leads to only large contact angle drops to form on this substrate. Small diameter drops of few micrometers with large contact angle might be highly unstable and hence unable to form. As a result, no drop formation takes place. However, surfactant significantly lowers the surface tension, leading to formation of smaller contact angle drops that are stable and hence are able to form
-
We attribute the difference between pure water and water/surfactant mixture to the differences in their surface tension. Surface tension directly determines the contact angle of drops. The large value of surface tension of water leads to only large contact angle drops to form on this substrate. Small diameter drops of few micrometers with large contact angle might be highly unstable and hence unable to form. As a result, no drop formation takes place. However, surfactant significantly lowers the surface tension, leading to formation of smaller contact angle drops that are stable and hence are able to form.
-
-
-
-
37
-
-
34948837515
-
-
The cylinders that have a diameter ∼9.5 μm or higher take longer time (more than 3 s) to evaporate. These are the cylinders that are formed with contact area as two or more polar SAMs (including the nonpolar SAMs in between).
-
The cylinders that have a diameter ∼9.5 μm or higher take longer time (more than 3 s) to evaporate. These are the cylinders that are formed with contact area as two or more polar SAMs (including the nonpolar SAMs in between).
-
-
-
-
38
-
-
34948881433
-
-
Initially, when the droplet is formed, nanotubes are present more in number in the central region of the droplet, which is the same as the central region of the polar SAM due to higher of liquid there. Ultimately, the SWNT end up in the lower region of the droplet in which the SAM edges are the same as the droplet edges. This rules out the fact that fast contraction along the length would have led to alignment. If fast contraction along the length would have led to alignment, then aligned nanotubes should be present in the entire polar SAM region after evaporation
-
Initially, when the droplet is formed, nanotubes are present more in number in the central region of the droplet, which is the same as the central region of the polar SAM due to higher volume of liquid there. Ultimately, the SWNT end up in the lower volume region of the droplet in which the SAM edges are the same as the droplet edges. This rules out the fact that fast contraction along the length would have led to alignment. If fast contraction along the length would have led to alignment, then aligned nanotubes should be present in the entire polar SAM region after evaporation.
-
-
-
-
39
-
-
34948886896
-
-
The actual value of the contact angle could not be estimated experimentally using goniometry because of the small dimensions of a few micrometers of the drop. Hence we did these calculations for a wide range (20-60°) of initial contact angles. Very similar results with slight variations were observed for them
-
The actual value of the contact angle could not be estimated experimentally using goniometry because of the small dimensions of a few micrometers of the drop. Hence we did these calculations for a wide range (20-60°) of initial contact angles. Very similar results with slight variations were observed for them.
-
-
-
-
40
-
-
34948821970
-
-
To verify that SDS/SWNT have no direct affinity for the polar SAM, several experiments were conducted where the patterned wafer was immersed directly into a SWNT solution (1 wt % SDS in water) for 2 min, as is typically done for equilibrium deposition. Negligible or no adhesion was found.
-
To verify that SDS/SWNT have no direct affinity for the polar SAM, several experiments were conducted where the patterned wafer was immersed directly into a SWNT solution (1 wt % SDS in water) for 2 min, as is typically done for equilibrium deposition. Negligible or no adhesion was found.
-
-
-
|