메뉴 건너뛰기




Volumn 19, Issue 6, 2007, Pages 542-549

Skeletal muscle remodeling

Author keywords

Atrophy; Hypertrophy; Myofiber; Myopathy; Signal transduction pathway

Indexed keywords

CALCINEURIN; HISTONE DEACETYLASE; MICRORNA; MYOCYTE ENHANCER FACTOR 2;

EID: 34948886117     PISSN: 10408711     EISSN: None     Source Type: Journal    
DOI: 10.1097/BOR.0b013e3282efb761     Document Type: Review
Times cited : (38)

References (56)
  • 1
    • 0029896830 scopus 로고    scopus 로고
    • Molecular diversity of myofibrillar proteins: Gene regulation and functional significance
    • Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 1996; 76:371-423.
    • (1996) Physiol Rev , vol.76 , pp. 371-423
    • Schiaffino, S.1    Reggiani, C.2
  • 2
    • 33746328957 scopus 로고    scopus 로고
    • Signaling pathways in skeletal muscle remodeling
    • This review comprehensively describes the signaling mechanisms that modify myofiber function with emphasis on clinical significance and therapeutic approaches to ameliorate muscle diseases
    • Bassel-Duby R, Olson EN. Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 2006; 75:19-37. This review comprehensively describes the signaling mechanisms that modify myofiber function with emphasis on clinical significance and therapeutic approaches to ameliorate muscle diseases.
    • (2006) Annu Rev Biochem , vol.75 , pp. 19-37
    • Bassel-Duby, R.1    Olson, E.N.2
  • 3
    • 0029802028 scopus 로고    scopus 로고
    • Postnatal development and plasticity of specialized muscle fiber characteristics in the hindlimb
    • Garry DJ, Bassel-Duby RS, Richardson JA, et al. Postnatal development and plasticity of specialized muscle fiber characteristics in the hindlimb. Dev Genet 1996; 19:146-156.
    • (1996) Dev Genet , vol.19 , pp. 146-156
    • Garry, D.J.1    Bassel-Duby, R.S.2    Richardson, J.A.3
  • 4
    • 0035168989 scopus 로고    scopus 로고
    • Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle
    • Baldwin KM, Haddad F. Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol 2001; 90:345-357.
    • (2001) J Appl Physiol , vol.90 , pp. 345-357
    • Baldwin, K.M.1    Haddad, F.2
  • 5
    • 0035112264 scopus 로고    scopus 로고
    • Invited review: Plasticity and energetic demands of contraction in skeletal and cardiac muscle
    • Sieck GC, Regnier M. Invited review: plasticity and energetic demands of contraction in skeletal and cardiac muscle. J Appl Physiol 2001; 90:1158-1164.
    • (2001) J Appl Physiol , vol.90 , pp. 1158-1164
    • Sieck, G.C.1    Regnier, M.2
  • 6
    • 0034019038 scopus 로고    scopus 로고
    • Myosin heavy chain isoform expression following reduced neuromuscular activity: Potential regulatory mechanisms
    • Talmadge RJ. Myosin heavy chain isoform expression following reduced neuromuscular activity: potential regulatory mechanisms. Muscle Nerve 2000; 23:661-679.
    • (2000) Muscle Nerve , vol.23 , pp. 661-679
    • Talmadge, R.J.1
  • 7
    • 0034705270 scopus 로고    scopus 로고
    • Calcineurin signaling and muscle remodeling
    • Olson EN, Williams RS. Calcineurin signaling and muscle remodeling. Cell 2000; 101:689-692.
    • (2000) Cell , vol.101 , pp. 689-692
    • Olson, E.N.1    Williams, R.S.2
  • 8
    • 22544457463 scopus 로고    scopus 로고
    • Calcineurin is necessary for the maintenance but not embryonic development of slow muscle fibers
    • Oh M, Rybkin II, Copeland V, et al. Calcineurin is necessary for the maintenance but not embryonic development of slow muscle fibers. Mol Cell Biol 2005; 25:6629-6638.
    • (2005) Mol Cell Biol , vol.25 , pp. 6629-6638
    • Oh, M.1
  • 9
    • 34547645404 scopus 로고    scopus 로고
    • Calcineurin-A{alpha} activation enhances the structure and function of regenerating muscles after myotoxic injury
    • 2 May [Epub ahead of print
    • Stupka N, Schertzer JD, Bassel-Duby R, Olson EN, Lynch GS. Calcineurin-A{alpha} activation enhances the structure and function of regenerating muscles after myotoxic injury. Am J Physiol Regul Integr Comp Physiol. 2007; 2 May [Epub ahead of print].
    • (2007) Am J Physiol Regul Integr Comp Physiol
    • Stupka, N.1    Schertzer, J.D.2    Bassel-Duby, R.3    Olson, E.N.4    Lynch, G.S.5
  • 10
    • 34948877409 scopus 로고    scopus 로고
    • MEF2: A central regulator of diverse developmental programs
    • in press
    • Potthoff J, Olson EN. MEF2: a central regulator of diverse developmental programs. Development (in press).
    • Development
    • Potthoff, J.1    Olson, E.N.2
  • 11
    • 14644431730 scopus 로고    scopus 로고
    • Toward transcriptional therapies for the failing heart: Chemical screens to modulate genes
    • McKinsey TA, Olson EN. Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest 2005; 115:538-546.
    • (2005) J Clin Invest , vol.115 , pp. 538-546
    • McKinsey, T.A.1    Olson, E.N.2
  • 12
    • 0033010960 scopus 로고    scopus 로고
    • Transcriptional activity of MEF2 during mouse embryogenesis monitored with a MEF2-dependent transgene
    • Naya FJ, Wu C, Richardson JA, et al. Transcriptional activity of MEF2 during mouse embryogenesis monitored with a MEF2-dependent transgene. Development 1999; 126:2045-2052.
    • (1999) Development , vol.126 , pp. 2045-2052
    • Naya, F.J.1    Wu, C.2    Richardson, J.A.3
  • 13
    • 17944382249 scopus 로고    scopus 로고
    • Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway
    • Wu H, Rothermel B, Kanatous S, et al. Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J 2001; 20:6414-6423.
    • (2001) EMBO J , vol.20 , pp. 6414-6423
    • Wu, H.1    Rothermel, B.2    Kanatous, S.3
  • 14
    • 34848858523 scopus 로고    scopus 로고
    • Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers
    • Potthoff MJ, Wu H, Arnold MA, et al. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J Clin Invest 2007; 117:2459-2467.
    • (2007) J Clin Invest , vol.117 , pp. 2459-2467
    • Potthoff, M.J.1    Wu, H.2    Arnold, M.A.3
  • 15
    • 34249664888 scopus 로고    scopus 로고
    • SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes
    • Berdeaux R, Goebel N, Banaszynski L, et al. SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nat Med 2007; 13: 597-603.
    • (2007) Nat Med , vol.13 , pp. 597-603
    • Berdeaux, R.1    Goebel, N.2    Banaszynski, L.3
  • 16
    • 0037066459 scopus 로고    scopus 로고
    • Regulation of mitochondrial biogenesis in skeletal muscle by CaMK
    • Wu H, Kanatous SB, Thurmond FA, et al. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 2002; 296:349-352.
    • (2002) Science , vol.296 , pp. 349-352
    • Wu, H.1    Kanatous, S.B.2    Thurmond, F.A.3
  • 17
    • 33846534356 scopus 로고    scopus 로고
    • KIN-29 SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II HDAC
    • van der Linden AM, Nolan KM, Sengupta P. KIN-29 SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II HDAC. EMBO J 2007; 26:358-370.
    • (2007) EMBO J , vol.26 , pp. 358-370
    • van der Linden, A.M.1    Nolan, K.M.2    Sengupta, P.3
  • 18
    • 12744262866 scopus 로고    scopus 로고
    • Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins
    • Chen AE, Ginty DD, Fan CM. Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature 2005; 433:317-322.
    • (2005) Nature , vol.433 , pp. 317-322
    • Chen, A.E.1    Ginty, D.D.2    Fan, C.M.3
  • 19
    • 33845596500 scopus 로고    scopus 로고
    • Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 2006; 27:728-735. This review highlights the transcriptional coactivator PGC-1 family as a strong activator of mitochondrial function and a dominant regulator of oxidative metabolism in a variety of tissues. Studies have elucidated the function of the PGC-1 coactivators in different tissues and have implicated PGC-1 dysregulation in diseases such as diabetes, obesity, cardiomyopathy, or neurodegeneration.
    • Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 2006; 27:728-735. This review highlights the transcriptional coactivator PGC-1 family as a strong activator of mitochondrial function and a dominant regulator of oxidative metabolism in a variety of tissues. Studies have elucidated the function of the PGC-1 coactivators in different tissues and have implicated PGC-1 dysregulation in diseases such as diabetes, obesity, cardiomyopathy, or neurodegeneration.
  • 20
    • 0037102256 scopus 로고    scopus 로고
    • Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres
    • Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002; 418:797-801.
    • (2002) Nature , vol.418 , pp. 797-801
    • Lin, J.1    Wu, H.2    Tarr, P.T.3
  • 21
    • 22144434964 scopus 로고    scopus 로고
    • Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle
    • Arany Z, He H, Lin J, et al. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab 2005; 1:259-271.
    • (2005) Cell Metab , vol.1 , pp. 259-271
    • Arany, Z.1    He, H.2    Lin, J.3
  • 22
    • 0037452677 scopus 로고    scopus 로고
    • Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) and mitochondrial function by MEF2 and HDAC5
    • Czubryt MP, McAnally J, Fishman GI, Olson EN. Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) and mitochondrial function by MEF2 and HDAC5. Proc Natl Acad Sci USA 2003; 100:1711-1716.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 1711-1716
    • Czubryt, M.P.1    McAnally, J.2    Fishman, G.I.3    Olson, E.N.4
  • 23
    • 34147109662 scopus 로고    scopus 로고
    • PGC-1alpha regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy
    • Handschin C, Kobayashi YM, Chin S, et al. PGC-1alpha regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes Dev 2007; 21:770-783.
    • (2007) Genes Dev , vol.21 , pp. 770-783
    • Handschin, C.1    Kobayashi, Y.M.2    Chin, S.3
  • 24
    • 33845674997 scopus 로고    scopus 로고
    • The transcriptional coactivator PGC-1beta drives the formation of oxidative type IIX fibers in skeletal muscle
    • Arany Z, Lebrasseur N, Morris C, et al. The transcriptional coactivator PGC-1beta drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab 2007; 5:35-46.
    • (2007) Cell Metab , vol.5 , pp. 35-46
    • Arany, Z.1    Lebrasseur, N.2    Morris, C.3
  • 25
    • 33644645013 scopus 로고    scopus 로고
    • PPAR delta: A dagger in the heart of the metabolic syndrome
    • Barish GD, Narkar VA, Evans RM. PPAR delta: a dagger in the heart of the metabolic syndrome. J Clin Invest 2006; 116:590-597.
    • (2006) J Clin Invest , vol.116 , pp. 590-597
    • Barish, G.D.1    Narkar, V.A.2    Evans, R.M.3
  • 26
    • 33750427891 scopus 로고    scopus 로고
    • PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes
    • Schuler M, Ali F, Chambon C, et al. PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab 2006; 4:407-414.
    • (2006) Cell Metab , vol.4 , pp. 407-414
    • Schuler, M.1    Ali, F.2    Chambon, C.3
  • 27
    • 33644766913 scopus 로고    scopus 로고
    • PPARdelta regulates glucose metabolism and insulin sensitivity
    • Lee CH, Olson P, Hevener A, et al. PPARdelta regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci USA 2006; 103:3444-3449.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 3444-3449
    • Lee, C.H.1    Olson, P.2    Hevener, A.3
  • 28
    • 0037453718 scopus 로고    scopus 로고
    • Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity
    • Wang YX, Lee CH, Tiep S, et al. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 2003; 113:159-170.
    • (2003) Cell , vol.113 , pp. 159-170
    • Wang, Y.X.1    Lee, C.H.2    Tiep, S.3
  • 29
    • 3042841322 scopus 로고    scopus 로고
    • Six1 and Eya1 expression can reprogram adult muscle from the slow-twitch phenotype into the fast-twitch phenotype
    • Grifone R, Laclef C, Spitz F, et al. Six1 and Eya1 expression can reprogram adult muscle from the slow-twitch phenotype into the fast-twitch phenotype. Mol Cell Biol 2004; 24:6253-6267.
    • (2004) Mol Cell Biol , vol.24 , pp. 6253-6267
    • Grifone, R.1    Laclef, C.2    Spitz, F.3
  • 30
    • 23944456384 scopus 로고    scopus 로고
    • Skeletal muscle hypertrophy and atrophy signaling pathways
    • Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 2005; 37:1974-1984.
    • (2005) Int J Biochem Cell Biol , vol.37 , pp. 1974-1984
    • Glass, D.J.1
  • 31
    • 33750400410 scopus 로고    scopus 로고
    • Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy
    • Leger B, Cartoni R, Praz M, et al. Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol 2006; 576:923-933.
    • (2006) J Physiol , vol.576 , pp. 923-933
    • Leger, B.1    Cartoni, R.2    Praz, M.3
  • 32
    • 33750735034 scopus 로고    scopus 로고
    • mTOR signaling and the molecular adaptation to resistance exercise
    • Bodine SC. mTOR signaling and the molecular adaptation to resistance exercise. Med Sci Sports Exerc 2006; 38:1950-1957.
    • (2006) Med Sci Sports Exerc , vol.38 , pp. 1950-1957
    • Bodine, S.C.1
  • 33
    • 33750595325 scopus 로고    scopus 로고
    • Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration
    • Mourkioti F, Kratsios P, Luedde T, et al. Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration. J Clin Invest 2006; 116:2945-2954.
    • (2006) J Clin Invest , vol.116 , pp. 2945-2954
    • Mourkioti, F.1    Kratsios, P.2    Luedde, T.3
  • 34
    • 33847034000 scopus 로고    scopus 로고
    • Gene expression profiling: Insights into skeletal muscle growth and development
    • This review discusses how microarray technology has been applied to study global gene expression changes in skeletal muscle
    • Reecy JM, Spurlock DM, Stahl CH. Gene expression profiling: insights into skeletal muscle growth and development. J Anim Sci 2006; 84 Suppl:E150-E154. This review discusses how microarray technology has been applied to study global gene expression changes in skeletal muscle.
    • (2006) J Anim Sci , Issue.SUPPL. E150-E154 , pp. 84
    • Reecy, J.M.1    Spurlock, D.M.2    Stahl, C.H.3
  • 35
    • 33846108814 scopus 로고    scopus 로고
    • Proteomics and systems biology in exercise and sport sciences research
    • This review describes recent advances in mass spectrometry-based proteomics and their application toward interpreting the physiological adaptations of skeletal muscle with exercise and obesity
    • Hittel DS, Hathout Y, Hoffman EP. Proteomics and systems biology in exercise and sport sciences research. Exerc Sport Sci Rev 2007; 35:5-11. This review describes recent advances in mass spectrometry-based proteomics and their application toward interpreting the physiological adaptations of skeletal muscle with exercise and obesity.
    • (2007) Exerc Sport Sci Rev , vol.35 , pp. 5-11
    • Hittel, D.S.1    Hathout, Y.2    Hoffman, E.P.3
  • 36
    • 0942301256 scopus 로고    scopus 로고
    • Transcriptional analysis of mouse skeletal myofiber diversity and adaptation to endurance exercise
    • Wu H, Gallardo T, Olson EN, et al. Transcriptional analysis of mouse skeletal myofiber diversity and adaptation to endurance exercise. J Muscle Res Cell Motil 2003; 24:587-592.
    • (2003) J Muscle Res Cell Motil , vol.24 , pp. 587-592
    • Wu, H.1    Gallardo, T.2    Olson, E.N.3
  • 37
    • 24644478044 scopus 로고    scopus 로고
    • Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise
    • Mahoney DJ, Parise G, Melov S, et al. Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J 2005; 19:1498-1500.
    • (2005) FASEB J , vol.19 , pp. 1498-1500
    • Mahoney, D.J.1    Parise, G.2    Melov, S.3
  • 38
    • 33749361585 scopus 로고    scopus 로고
    • Analysis of human skeletal muscle after 48 h immobilization reveals alterations in mRNA and protein for extracellular matrix components
    • Urso ML, Scrimgeour AG, Chen YW, et al. Analysis of human skeletal muscle after 48 h immobilization reveals alterations in mRNA and protein for extracellular matrix components. J Appl Physiol 2006; 101:1136-1148.
    • (2006) J Appl Physiol , vol.101 , pp. 1136-1148
    • Urso, M.L.1    Scrimgeour, A.G.2    Chen, Y.W.3
  • 39
    • 26944480441 scopus 로고    scopus 로고
    • Analysis of the global RNA expression profiles of skeletal muscle cells treated with statins
    • Morikawa S, Murakami T, Yamazaki H, et al. Analysis of the global RNA expression profiles of skeletal muscle cells treated with statins. J Atheroscler Thromb 2005; 12:121-131.
    • (2005) J Atheroscler Thromb , vol.12 , pp. 121-131
    • Morikawa, S.1    Murakami, T.2    Yamazaki, H.3
  • 40
    • 2442430278 scopus 로고    scopus 로고
    • In vivo epinephrine-mediated regulation of gene expression in human skeletal muscle
    • Viguerie N, Clement K, Barbe P, et al. In vivo epinephrine-mediated regulation of gene expression in human skeletal muscle. J Clin Endocrinol Metab 2004; 89:2000-2014.
    • (2004) J Clin Endocrinol Metab , vol.89 , pp. 2000-2014
    • Viguerie, N.1    Clement, K.2    Barbe, P.3
  • 41
    • 23444456921 scopus 로고    scopus 로고
    • Gene expression profile in the muscles of patients with inflammatory myopathies: Effect of therapy with IVIg and biological validation of clinically relevant genes
    • Raju R, Dalakas MC. Gene expression profile in the muscles of patients with inflammatory myopathies: effect of therapy with IVIg and biological validation of clinically relevant genes. Brain 2005; 128:1887-1896.
    • (2005) Brain , vol.128 , pp. 1887-1896
    • Raju, R.1    Dalakas, M.C.2
  • 42
    • 3343022747 scopus 로고    scopus 로고
    • cDNA microarrays reveal distinct gene expression clusters in idiopathic inflammatory myopathies
    • Zhou X, Dimachkie MM, Xiong M, et al. cDNA microarrays reveal distinct gene expression clusters in idiopathic inflammatory myopathies. Med Sci Monit 2004; 10:BR191-BR197.
    • (2004) Med Sci Monit , vol.10
    • Zhou, X.1    Dimachkie, M.M.2    Xiong, M.3
  • 43
    • 31344475538 scopus 로고    scopus 로고
    • 2-D protein maps of rat gastrocnemius and soleus muscles: A tool for muscle plasticity assessment
    • Gelfi C, Vigano A, De Palma S, et al. 2-D protein maps of rat gastrocnemius and soleus muscles: a tool for muscle plasticity assessment. Proteomics 2006; 6:321-340.
    • (2006) Proteomics , vol.6 , pp. 321-340
    • Gelfi, C.1    Vigano, A.2    De Palma, S.3
  • 44
    • 33748357119 scopus 로고    scopus 로고
    • Proteomic analysis of fast and slow muscles from normal and kyphoscoliotic mice using protein arrays, 2-DE and MS
    • Le Bihan MC, Hou Y, Harris N, et al. Proteomic analysis of fast and slow muscles from normal and kyphoscoliotic mice using protein arrays, 2-DE and MS. Proteomics 2006; 6:4646-4661.
    • (2006) Proteomics , vol.6 , pp. 4646-4661
    • Le Bihan, M.C.1    Hou, Y.2    Harris, N.3
  • 45
    • 23044491458 scopus 로고    scopus 로고
    • Proteomic analysis of slow- and fast-twitch skeletal muscles
    • Okumura N, Hashida-Okumura A, Kita K, et al. Proteomic analysis of slow- and fast-twitch skeletal muscles. Proteomics 2005; 5:2896-2906.
    • (2005) Proteomics , vol.5 , pp. 2896-2906
    • Okumura, N.1    Hashida-Okumura, A.2    Kita, K.3
  • 46
    • 34247881871 scopus 로고    scopus 로고
    • Proteomic profiling of pathological and aged skeletal muscle fibres by peptide mass fingerprinting
    • This review discusses the recent progress in the biochemical analysis of skeletal muscle extracts and outlines the mass spectrometry-based proteomics approach for studying muscle tissues in normal and pathobiochemical processes
    • Doran P, Donoghue P, O'Connell K, et al. Proteomic profiling of pathological and aged skeletal muscle fibres by peptide mass fingerprinting. Int J Mol Med 2007; 19:547-564. This review discusses the recent progress in the biochemical analysis of skeletal muscle extracts and outlines the mass spectrometry-based proteomics approach for studying muscle tissues in normal and pathobiochemical processes.
    • (2007) Int J Mol Med , vol.19 , pp. 547-564
    • Doran, P.1    Donoghue, P.2    O'Connell, K.3
  • 47
    • 33746916488 scopus 로고    scopus 로고
    • Proteomic analysis of inclusion body myositis
    • Li J, Yin C, Okamoto H, et al. Proteomic analysis of inclusion body myositis. J Neuropathol Exp Neurol 2006; 65:826-833.
    • (2006) J Neuropathol Exp Neurol , vol.65 , pp. 826-833
    • Li, J.1    Yin, C.2    Okamoto, H.3
  • 48
    • 33745338485 scopus 로고    scopus 로고
    • MicroRNAs: A new class of regulatory genes affecting metabolism
    • This study describes the possibility that miRNAs may contribute to common metabolic diseases and points to novel therapeutic opportunities based on targeting of miRNAs
    • Krutzfeldt J, Stoffel M. MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab 2006; 4:9-12. This study describes the possibility that miRNAs may contribute to common metabolic diseases and points to novel therapeutic opportunities based on targeting of miRNAs.
    • (2006) Cell Metab , vol.4 , pp. 9-12
    • Krutzfeldt, J.1    Stoffel, M.2
  • 49
    • 31744432337 scopus 로고    scopus 로고
    • Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006; 38:228-233. This study describes the role and the targets of miR-1 and miR-133 in skeletal muscle proliferation and differentiation. These findings suggest a molecular mechanism in which miRNAs participate in transcriptional circuits that control skeletal muscle gene expression and embryonic development.
    • Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006; 38:228-233. This study describes the role and the targets of miR-1 and miR-133 in skeletal muscle proliferation and differentiation. These findings suggest a molecular mechanism in which miRNAs participate in transcriptional circuits that control skeletal muscle gene expression and embryonic development.
  • 50
    • 33846153786 scopus 로고    scopus 로고
    • MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy
    • This study determines the expression level of the muscle-specific miRNAs in the skeletal muscle. Results from this study show alterations in expression of muscle-specific miRNAs in adult skeletal muscle and suggest miRNAs may have a role in the adaptation to functional overload
    • McCarthy JJ, Esser KA. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol 2007; 102:306-313. This study determines the expression level of the muscle-specific miRNAs in the skeletal muscle. Results from this study show alterations in expression of muscle-specific miRNAs in adult skeletal muscle and suggest miRNAs may have a role in the adaptation to functional overload.
    • (2007) J Appl Physiol , vol.102 , pp. 306-313
    • McCarthy, J.J.1    Esser, K.A.2
  • 51
    • 33748102321 scopus 로고    scopus 로고
    • Muscle-specific microRNA miR-206 promotes muscle differentiation
    • Kim HK, Lee YS, Sivaprasad U, et al. Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 2006; 174:677-687.
    • (2006) J Cell Biol , vol.174 , pp. 677-687
    • Kim, H.K.1    Lee, Y.S.2    Sivaprasad, U.3
  • 52
    • 34547114014 scopus 로고    scopus 로고
    • MicroRNA-206 is over-expressed in the diaphragm but not the hindlimb muscle of mdx mouse
    • McCarthy JJ, Esser KA, Andrade FH. MicroRNA-206 is over-expressed in the diaphragm but not the hindlimb muscle of mdx mouse. Am J Physiol Cell Physiol 2007; 293:C451-C457.
    • (2007) Am J Physiol Cell Physiol , vol.293
    • McCarthy, J.J.1    Esser, K.A.2    Andrade, F.H.3
  • 53
    • 33745577150 scopus 로고    scopus 로고
    • A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep
    • Clop A, Marcq F, Takeda H, et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 2006; 38:813-818.
    • (2006) Nat Genet , vol.38 , pp. 813-818
    • Clop, A.1    Marcq, F.2    Takeda, H.3
  • 54
    • 28444469246 scopus 로고    scopus 로고
    • Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 2005; 438:685-689.
    • Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 2005; 438:685-689.
  • 55
    • 34848818486 scopus 로고    scopus 로고
    • Myosin accumulation and striated muscle myopathy resulting from the loss of Muscle RING Finger 1 and 3
    • in press
    • Fielitz J, Kim M, Shelton JM, et al. Myosin accumulation and striated muscle myopathy resulting from the loss of Muscle RING Finger 1 and 3. J Clin Invest 2007 in press.
    • (2007) J Clin Invest
    • Fielitz, J.1    Kim, M.2    Shelton, J.M.3
  • 56
    • 34247589595 scopus 로고    scopus 로고
    • Control of stress-dependent cardiac growth and gene expression by a microRNA
    • van Rooij E, Sutherland LB, Qi X, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 2007; 316: 575-579.
    • (2007) Science , vol.316 , pp. 575-579
    • van Rooij, E.1    Sutherland, L.B.2    Qi, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.