메뉴 건너뛰기




Volumn 27, Issue 3, 2007, Pages 249-267

A layered approach to learning coordination knowledge in multiagent environments

Author keywords

Hierarchical reinforcement learning; Multiagent learning; Reinforcement learning

Indexed keywords

COMMUNICATION SYSTEMS; DECISION MAKING; HIERARCHICAL SYSTEMS; INTELLIGENT AGENTS; KNOWLEDGE ACQUISITION; REINFORCEMENT LEARNING;

EID: 34948867815     PISSN: 0924669X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10489-006-0034-y     Document Type: Article
Times cited : (13)

References (50)
  • 6
    • 0036500070 scopus 로고    scopus 로고
    • Learning sequences of compatible actions among agents
    • 1
    • Polat F, Abul O (2002) Learning sequences of compatible actions among agents. Artif Intell Rev 17(1): 21-37
    • (2002) Artif Intell Rev , vol.17 , pp. 21-37
    • Polat, F.1    Abul, O.2
  • 12
    • 0036792066 scopus 로고    scopus 로고
    • Learning intelligent behavior in a non-stationary and partially observable environment
    • 2
    • Senkul S, Polat F (2002) Learning intelligent behavior in a non-stationary and partially observable environment. Artif Intell Rev 18(2):97-115
    • (2002) Artif Intell Rev , vol.18 , pp. 97-115
    • Senkul, S.1    Polat, F.2
  • 13
    • 0034313638 scopus 로고    scopus 로고
    • Multi-agent reinforcement learning using function approximation
    • 4
    • Abul O, Polat F (2000) Multi-agent reinforcement learning using function approximation. IEEE Trans Syst, Man and Cybern, Part C, 30(4):485-497
    • (2000) IEEE Trans Syst, Man and Cybern, Part C , vol.30 , pp. 485-497
    • Abul, O.1    Polat, F.2
  • 18
    • 0001341735 scopus 로고    scopus 로고
    • Introduction to monte carlo methods
    • Jordan M (eds). MIT Press Cambridge, MA
    • MacKay DJC (1999) Introduction to monte carlo methods. In: Jordan M (eds) Learning in graphical models. MIT Press, Cambridge, MA: pp 175-204
    • (1999) Learning in Graphical Models , pp. 175-204
    • MacKay, D.J.C.1
  • 21
    • 0035978635 scopus 로고    scopus 로고
    • Modular Q-learning based multiagent cooperation for robot soccer
    • Park K, Kim YJ, Kim JH (2001) Modular Q-learning based multiagent cooperation for robot soccer. Robot Auton Syst 35:109-122
    • (2001) Robot Auton Syst , vol.35 , pp. 109-122
    • Park, K.1    Kim, Y.J.2    Kim, J.H.3
  • 22
    • 1842535228 scopus 로고    scopus 로고
    • Modular fuzzy-reinforcement learning approach with internal model capabilities for multiagent systems
    • Kaya M, Alhajj R (2004) Modular fuzzy-reinforcement learning approach with internal model capabilities for multiagent systems. IEEE Trans. on Syst, Man, and Cybern, Part B 34(2): 1210-1223
    • (2004) IEEE Trans. on Syst, Man, and Cybern, Part B , vol.34 , Issue.2 , pp. 1210-1223
    • Kaya, M.1    Alhajj, R.2
  • 25
    • 0033570798 scopus 로고    scopus 로고
    • A unified analysis of value-function-based reinforcement learning algorithms
    • Szepesvari C, Littman ML (1999) A unified analysis of value-function-based reinforcement learning algorithms. Neur Comput 8:2017-2059
    • (1999) Neur Comput , vol.8 , pp. 2017-2059
    • Szepesvari, C.1    Littman, M.L.2
  • 26
    • 0002550841 scopus 로고    scopus 로고
    • Learning about other agents in a dynamic multiagent system
    • Hu J, Wellman MP (2001) Learning about other agents in a dynamic multiagent system. J Cognit Syst Res 2:67-79
    • (2001) J Cognit Syst Res , vol.2 , pp. 67-79
    • Hu, J.1    Wellman, M.P.2
  • 28
    • 4644369748 scopus 로고    scopus 로고
    • Nash Q-learning for general-sum stochastic games
    • Hu J, Wellman M (2003) Nash Q-learning for general-sum stochastic games. J Mach Learn Res 4:1039-1069
    • (2003) J Mach Learn Res , vol.4 , pp. 1039-1069
    • Hu, J.1    Wellman, M.2
  • 33
    • 0036531878 scopus 로고    scopus 로고
    • Multiagent learning using a variable learning rate
    • Bowling M, Veloso M (2001) Multiagent learning using a variable learning rate. Artif Intell 136:215-250
    • (2001) Artif Intell , vol.136 , pp. 215-250
    • Bowling, M.1    Veloso, M.2
  • 36
    • 0141988716 scopus 로고    scopus 로고
    • Recent advances in hierarchical reinforcement learning
    • 4
    • Barto A, Mahadevan S (2003) Recent advances in hierarchical reinforcement learning. Discr Event Dynam Syst 13(4):341-379
    • (2003) Discr Event Dynam Syst , vol.13 , pp. 341-379
    • Barto, A.1    Mahadevan, S.2
  • 38
    • 0033170372 scopus 로고    scopus 로고
    • Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning
    • 1-2
    • Sutton R, Precup D, Singh S (1999) Between mdps and semi-mdps: a framework for temporal abstraction in reinforcement learning. Artif intell 112(1-2):181-211
    • (1999) Artif Intell , vol.112 , pp. 181-211
    • Sutton, R.1    Precup, D.2    Singh, S.3
  • 40
    • 0002278788 scopus 로고    scopus 로고
    • Hierarchical reinforcement learning with the maxq value function decomposition
    • Dietterich T (2000) Hierarchical reinforcement learning with the maxq value function decomposition. J Artif Intell Res 9:227-303
    • (2000) J Artif Intell Res , vol.9 , pp. 227-303
    • Dietterich, T.1
  • 43
    • 14344261491 scopus 로고    scopus 로고
    • Using relative novelty to identify useful temporal abstractions in reinforcement learning
    • Banff, Canada
    • Simsek O, Barto A (2004) Using relative novelty to identify useful temporal abstractions in reinforcement learning. In: Proc. of int'l conference on machine learning, ICML'04, Banff, Canada
    • (2004) Proc. of Int'l Conference on Machine Learning, ICML'04
    • Simsek, O.1    Barto, A.2
  • 44
    • 0000123778 scopus 로고
    • Self-improving reactive agents based on in reinforcement learning, planning and teaching
    • 3-4
    • Lin L (1992) Self-improving reactive agents based on in reinforcement learning, planning and teaching. Mach Learn 8(3-4):293-321
    • (1992) Mach Learn , vol.8 , pp. 293-321
    • Lin, L.1
  • 49
    • 33846942607 scopus 로고    scopus 로고
    • Hierarchical multiagent reinforcement learning
    • DOI: 10.1007/s10458-006-7035-4
    • Ghavamzadeh M, Mahadevan S, Makar R (2006) Hierarchical multiagent reinforcement learning. J Auton Agents Multiagent Syst 13(2):197-229, DOI: 10.1007/s10458-006-7035-4
    • (2006) J Auton Agents Multiagent Syst , vol.13 , Issue.2 , pp. 197-229
    • Ghavamzadeh, M.1    Mahadevan, S.2    Makar, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.