-
6
-
-
0036500070
-
Learning sequences of compatible actions among agents
-
1
-
Polat F, Abul O (2002) Learning sequences of compatible actions among agents. Artif Intell Rev 17(1): 21-37
-
(2002)
Artif Intell Rev
, vol.17
, pp. 21-37
-
-
Polat, F.1
Abul, O.2
-
10
-
-
84949940071
-
Evolving behavioral strategies in predators and prey
-
Springer Verlag Berlin
-
Haynes T, Sen S (1996) Evolving behavioral strategies in predators and prey. In: Weiss G, Sen S (eds) Adaptation and learning in multiagent systems, Springer Verlag, Berlin, pp 113-126
-
(1996)
Adaptation and Learning in Multiagent Systems
, pp. 113-126
-
-
Haynes, T.1
Sen, S.2
Weiss, G.3
Sen, S.4
-
12
-
-
0036792066
-
Learning intelligent behavior in a non-stationary and partially observable environment
-
2
-
Senkul S, Polat F (2002) Learning intelligent behavior in a non-stationary and partially observable environment. Artif Intell Rev 18(2):97-115
-
(2002)
Artif Intell Rev
, vol.18
, pp. 97-115
-
-
Senkul, S.1
Polat, F.2
-
13
-
-
0034313638
-
Multi-agent reinforcement learning using function approximation
-
4
-
Abul O, Polat F (2000) Multi-agent reinforcement learning using function approximation. IEEE Trans Syst, Man and Cybern, Part C, 30(4):485-497
-
(2000)
IEEE Trans Syst, Man and Cybern, Part C
, vol.30
, pp. 485-497
-
-
Abul, O.1
Polat, F.2
-
18
-
-
0001341735
-
Introduction to monte carlo methods
-
Jordan M (eds). MIT Press Cambridge, MA
-
MacKay DJC (1999) Introduction to monte carlo methods. In: Jordan M (eds) Learning in graphical models. MIT Press, Cambridge, MA: pp 175-204
-
(1999)
Learning in Graphical Models
, pp. 175-204
-
-
MacKay, D.J.C.1
-
20
-
-
84890606155
-
A modular approach to multiagent reinforcement learning
-
Springer-Verlag Berlin, Germany
-
Ono N, Fukomoto K (1997) A modular approach to multiagent reinforcement learning. In: Weiss G (eds) Distributed artificial intelligence meets machine learning-learning in multiagent systems, vol. 1221, Springer-Verlag, Berlin, Germany, pp 25-39
-
(1997)
Distributed Artificial Intelligence Meets Machine Learning-learning in Multiagent Systems, Vol. 1221
, pp. 25-39
-
-
Ono, N.1
Fukomoto, K.2
Weiss, G.3
-
21
-
-
0035978635
-
Modular Q-learning based multiagent cooperation for robot soccer
-
Park K, Kim YJ, Kim JH (2001) Modular Q-learning based multiagent cooperation for robot soccer. Robot Auton Syst 35:109-122
-
(2001)
Robot Auton Syst
, vol.35
, pp. 109-122
-
-
Park, K.1
Kim, Y.J.2
Kim, J.H.3
-
22
-
-
1842535228
-
Modular fuzzy-reinforcement learning approach with internal model capabilities for multiagent systems
-
Kaya M, Alhajj R (2004) Modular fuzzy-reinforcement learning approach with internal model capabilities for multiagent systems. IEEE Trans. on Syst, Man, and Cybern, Part B 34(2): 1210-1223
-
(2004)
IEEE Trans. on Syst, Man, and Cybern, Part B
, vol.34
, Issue.2
, pp. 1210-1223
-
-
Kaya, M.1
Alhajj, R.2
-
25
-
-
0033570798
-
A unified analysis of value-function-based reinforcement learning algorithms
-
Szepesvari C, Littman ML (1999) A unified analysis of value-function-based reinforcement learning algorithms. Neur Comput 8:2017-2059
-
(1999)
Neur Comput
, vol.8
, pp. 2017-2059
-
-
Szepesvari, C.1
Littman, M.L.2
-
26
-
-
0002550841
-
Learning about other agents in a dynamic multiagent system
-
Hu J, Wellman MP (2001) Learning about other agents in a dynamic multiagent system. J Cognit Syst Res 2:67-79
-
(2001)
J Cognit Syst Res
, vol.2
, pp. 67-79
-
-
Hu, J.1
Wellman, M.P.2
-
28
-
-
4644369748
-
Nash Q-learning for general-sum stochastic games
-
Hu J, Wellman M (2003) Nash Q-learning for general-sum stochastic games. J Mach Learn Res 4:1039-1069
-
(2003)
J Mach Learn Res
, vol.4
, pp. 1039-1069
-
-
Hu, J.1
Wellman, M.2
-
33
-
-
0036531878
-
Multiagent learning using a variable learning rate
-
Bowling M, Veloso M (2001) Multiagent learning using a variable learning rate. Artif Intell 136:215-250
-
(2001)
Artif Intell
, vol.136
, pp. 215-250
-
-
Bowling, M.1
Veloso, M.2
-
36
-
-
0141988716
-
Recent advances in hierarchical reinforcement learning
-
4
-
Barto A, Mahadevan S (2003) Recent advances in hierarchical reinforcement learning. Discr Event Dynam Syst 13(4):341-379
-
(2003)
Discr Event Dynam Syst
, vol.13
, pp. 341-379
-
-
Barto, A.1
Mahadevan, S.2
-
37
-
-
84880718755
-
Concurrent hierarchical reinforcement learning
-
(accepted for presentation), Edinburgh, Scotland
-
Marthi B, Russell S, Latham D, Guestrin C (2005) Concurrent hierarchical reinforcement learning. In: The twentieth international joint conference on artificial intelligence, IJ CAI, (accepted for presentation), Edinburgh, Scotland
-
(2005)
The Twentieth International Joint Conference on Artificial Intelligence, IJ CAI
-
-
Marthi, B.1
Russell, S.2
Latham, D.3
Guestrin, C.4
-
38
-
-
0033170372
-
Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning
-
1-2
-
Sutton R, Precup D, Singh S (1999) Between mdps and semi-mdps: a framework for temporal abstraction in reinforcement learning. Artif intell 112(1-2):181-211
-
(1999)
Artif Intell
, vol.112
, pp. 181-211
-
-
Sutton, R.1
Precup, D.2
Singh, S.3
-
40
-
-
0002278788
-
Hierarchical reinforcement learning with the maxq value function decomposition
-
Dietterich T (2000) Hierarchical reinforcement learning with the maxq value function decomposition. J Artif Intell Res 9:227-303
-
(2000)
J Artif Intell Res
, vol.9
, pp. 227-303
-
-
Dietterich, T.1
-
41
-
-
84945250000
-
Q-cut dynamic discovery of sub-goals in reinforcement learning
-
Springer-Verlag, London, UK
-
Menache I, Mannor S, Shimkin N (2002) Q-cut dynamic discovery of sub-goals in reinforcement learning. In: Proc. of European conference on machine learning, ECML'02, Springer-Verlag, London, UK, pp 295-306
-
(2002)
Proc. of European Conference on Machine Learning, ECML'02
, pp. 295-306
-
-
Menache, I.1
Mannor, S.2
Shimkin, N.3
-
42
-
-
84912073624
-
Learning options in reinforcement learning
-
Springer-Verlag, London, UK
-
Stolle M, Precup D (2002) Learning options in reinforcement learning. In Proc. of the int'l symposium on abstarction, reformulation and approximation. Springer-Verlag, London, UK, pp 212-223
-
(2002)
Proc. of the Int'l Symposium on Abstarction, Reformulation and Approximation
, pp. 212-223
-
-
Stolle, M.1
Precup, D.2
-
43
-
-
14344261491
-
Using relative novelty to identify useful temporal abstractions in reinforcement learning
-
Banff, Canada
-
Simsek O, Barto A (2004) Using relative novelty to identify useful temporal abstractions in reinforcement learning. In: Proc. of int'l conference on machine learning, ICML'04, Banff, Canada
-
(2004)
Proc. of Int'l Conference on Machine Learning, ICML'04
-
-
Simsek, O.1
Barto, A.2
-
44
-
-
0000123778
-
Self-improving reactive agents based on in reinforcement learning, planning and teaching
-
3-4
-
Lin L (1992) Self-improving reactive agents based on in reinforcement learning, planning and teaching. Mach Learn 8(3-4):293-321
-
(1992)
Mach Learn
, vol.8
, pp. 293-321
-
-
Lin, L.1
-
48
-
-
35148872916
-
State similarity based approach for improving performance in rl
-
(Accepted for presentation), Hyderabad, India
-
Girgin S, Polat F, Alhajj R (2007) State similarity based approach for improving performance in rl. In: The twentieth international joint conference on artificial intelligence IJCAI, (Accepted for presentation), Hyderabad, India
-
(2007)
The Twentieth International Joint Conference on Artificial Intelligence IJCAI
-
-
Girgin, S.1
Polat, F.2
Alhajj, R.3
-
49
-
-
33846942607
-
Hierarchical multiagent reinforcement learning
-
DOI: 10.1007/s10458-006-7035-4
-
Ghavamzadeh M, Mahadevan S, Makar R (2006) Hierarchical multiagent reinforcement learning. J Auton Agents Multiagent Syst 13(2):197-229, DOI: 10.1007/s10458-006-7035-4
-
(2006)
J Auton Agents Multiagent Syst
, vol.13
, Issue.2
, pp. 197-229
-
-
Ghavamzadeh, M.1
Mahadevan, S.2
Makar, R.3
|