-
1
-
-
0034205975
-
Multiagent systems: A survey from a machine learning perspective
-
P. Stone and M. Veloso, "Multiagent systems: a survey from a machine learning perspective," Auton. Robots, vol. 8, no. 3, 2000.
-
(2000)
Auton. Robots
, vol.8
, Issue.3
-
-
Stone, P.1
Veloso, M.2
-
2
-
-
1142305413
-
-
Ph.D. dissertation, Comput. Sci. Dept., Stanford Univ., Stanford, CA
-
S. Benson, "Reacting, planning and learning in an autonomous agent," Ph.D. dissertation, Comput. Sci. Dept., Stanford Univ., Stanford, CA, 1995.
-
(1995)
Reacting, Planning and Learning in an Autonomous Agent
-
-
Benson, S.1
-
3
-
-
85149834820
-
Markov games as a framework for multiagent reinforcement learning
-
San Francisco, CA
-
M. L. Littman, "Markov games as a framework for multiagent reinforcement learning," in Proc. Int. Conf. Machine Learning, San Francisco, CA, 1994, pp. 157-163.
-
(1994)
Proc. Int. Conf. Machine Learning
, pp. 157-163
-
-
Littman, M.L.1
-
4
-
-
0030050933
-
Multiagent reinforcement learning in the iterated prisoner's dilemma
-
T. W. Sandholm and R. H. Crites, "Multiagent reinforcement learning in the iterated prisoner's dilemma," Biosystems, vol. 37, pp. 147-166, 1995.
-
(1995)
Biosystems
, vol.37
, pp. 147-166
-
-
Sandholm, T.W.1
Crites, R.H.2
-
5
-
-
85152198941
-
Multi-agent reinforcement learning: Independent vs. cooperative agents
-
M. Tan, "Multi-agent reinforcement learning: independent vs. cooperative agents," in Proc. Int. Conf. Machine Learning, 1993, pp. 330-337.
-
(1993)
Proc. Int. Conf. Machine Learning
, pp. 330-337
-
-
Tan, M.1
-
6
-
-
0003326518
-
Learning multiple goal behavior via task decomposition and dynamic policy merging
-
Norwell, MA: Kluwer
-
S. Whitehead, J. Karlsson, and J. Tenenberg, "Learning multiple goal behavior via task decomposition and dynamic policy merging," in Robot Learn.. Norwell, MA: Kluwer, 1993.
-
(1993)
Robot Learn.
-
-
Whitehead, S.1
Karlsson, J.2
Tenenberg, J.3
-
8
-
-
0035978635
-
Modular Q-learning based multiagent cooperation for robot soccer
-
K. H. Park, Y. J. Kim, and J. H. Kim, "Modular Q-learning based multiagent cooperation for robot soccer," Robot. Auton. Syst., vol. 35, pp. 109-122, 2001.
-
(2001)
Robot. Auton. Syst.
, vol.35
, pp. 109-122
-
-
Park, K.H.1
Kim, Y.J.2
Kim, J.H.3
-
9
-
-
85151728371
-
Residual algorithms: Reinforcement learning with function approximation
-
New York: Morgan Kaufmann
-
L. Baird, "Residual algorithms: reinforcement learning with function approximation," in Proceedings of the International Conference on Machine Learning. New York: Morgan Kaufmann, 1995.
-
(1995)
Proceedings of the International Conference on Machine Learning
-
-
Baird, L.1
-
10
-
-
0000723997
-
Generalization in reinforcement learning: Successful examples using sparse coarse coding
-
R. S. Sutton, "Generalization in reinforcement learning: successful examples using sparse coarse coding," Adv. Neural Inf. Processing Syst., 1996.
-
(1996)
Adv. Neural Inf. Processing Syst.
-
-
Sutton, R.S.1
-
12
-
-
0000123778
-
Self-improving reactive agents based on reinforcement learning, planning and teaching
-
L. J. Lin, "Self-improving reactive agents based on reinforcement learning, planning and teaching," Mach. Learn., vol. 8, pp. 293-321, 1992.
-
(1992)
Mach. Learn.
, vol.8
, pp. 293-321
-
-
Lin, L.J.1
-
13
-
-
1842610379
-
Neural reinforcement learning for behavior synthesis
-
Lille, France, July
-
P. Touzet, "Neural reinforcement learning for behavior synthesis," in Proc. CESA, IMACS Multiconf., Lille, France, July 1996.
-
(1996)
Proc. CESA, IMACS Multiconf.
-
-
Touzet, P.1
-
14
-
-
0034313638
-
Multiagent reinforcement learning using function approximation
-
Aug.
-
O. Abul, F. Polat, and R. Alhajj, "Multiagent reinforcement learning using function approximation," IEEE Trans. Syst., Man, Cybern. C, vol. 30, pp. 485-497, Aug. 2000.
-
(2000)
IEEE Trans. Syst., Man, Cybern. C
, vol.30
, pp. 485-497
-
-
Abul, O.1
Polat, F.2
Alhajj, R.3
-
15
-
-
0000769617
-
A conflict resolution based decentralized multi-agent problem solving model
-
New York: Springer-Verlag
-
F. Polat and A. Guvenir, "A conflict resolution based decentralized multi-agent problem solving model," in Artificial Social Systems. New York: Springer-Verlag, 1994.
-
(1994)
Artificial Social Systems
-
-
Polat, F.1
Guvenir, A.2
-
16
-
-
0029277469
-
A sensor-based navigation for a mobile robot using fuzzy-logic and reinforcement learning
-
June
-
H. R. Beon and H. S. Cho, "A sensor-based navigation for a mobile robot using fuzzy-logic and reinforcement learning," IEEE Trans. Syst., Man, Cybern., vol. 25, pp. 464-477, June 1995.
-
(1995)
IEEE Trans. Syst., Man, Cybern.
, vol.25
, pp. 464-477
-
-
Beon, H.R.1
Cho, H.S.2
-
17
-
-
0033115244
-
An intelligent mobile vehicle navigator based on fuzzy logic and reinforcement learning
-
Apr.
-
N. H. C. Yung and C. Ye, "An intelligent mobile vehicle navigator based on fuzzy logic and reinforcement learning," IEEE Trans. Syst., Man, Cybern. B, vol. 29, pp. 314-321, Apr. 1999.
-
(1999)
IEEE Trans. Syst., Man, Cybern. B
, vol.29
, pp. 314-321
-
-
Yung, N.H.C.1
Ye, C.2
-
18
-
-
0033280134
-
Cooperation and coordination between fuzzy reinforcement learning agents in continuous state partially observable Markov decision processes
-
Seoul, South Korea
-
H. Berenji and D. Vengerov, "Cooperation and coordination between fuzzy reinforcement learning agents in continuous state partially observable Markov decision processes," in Proc. IEEE Int. Conf. Fuzzy Systems, vol. 2, Seoul, South Korea, 1999, pp. 621-627.
-
(1999)
Proc. IEEE Int. Conf. Fuzzy Systems
, vol.2
, pp. 621-627
-
-
Berenji, H.1
Vengerov, D.2
-
19
-
-
0033685787
-
Advantage of cooperation between reinforcement learning agents in difficult stochastic problems
-
San Antonio, TX
-
_, "Advantage of cooperation between reinforcement learning agents in difficult stochastic problems," in Proc. IEEE Int. Conf. Fuzzy Systems, vol. 2, San Antonio, TX, 2000, pp. 871-876.
-
(2000)
Proc. IEEE Int. Conf. Fuzzy Systems
, vol.2
, pp. 871-876
-
-
-
21
-
-
0000929496
-
Multiagent reinforcement learning: Theoretical framework and an algorithm
-
J. Hu and M. P. Wellman, "Multiagent reinforcement learning: theoretical framework and an algorithm," in Proc. Int. Conf. Machine Learning, 1998, pp. 242-250.
-
(1998)
Proc. Int. Conf. Machine Learning
, pp. 242-250
-
-
Hu, J.1
Wellman, M.P.2
-
22
-
-
0001435241
-
Multi-agent reinforcement learning: An approach based on the other agent's internal model
-
Boston, MA
-
Y. Nagayuki, S. Ishii, and K. Doya, "Multi-agent reinforcement learning: an approach based on the other agent's internal model," in Proc. IEEE Int. Conf. Multi-Agent Systems, Boston, MA, 2000, pp. 215-221.
-
(2000)
Proc. IEEE Int. Conf. Multi-agent Systems
, pp. 215-221
-
-
Nagayuki, Y.1
Ishii, S.2
Doya, K.3
-
23
-
-
1842558173
-
Learning faster in cooperative multi-agent systems
-
York, U.K., Mar.
-
M. Kaya and A. Arslan, "Learning faster in cooperative multi-agent systems," in Proc. Symp. Adaptive Agents and Multi-Agent Systems, York, U.K., Mar. 2001, pp. 85-89.
-
(2001)
Proc. Symp. Adaptive Agents and Multi-agent Systems
, pp. 85-89
-
-
Kaya, M.1
Arslan, A.2
-
24
-
-
1842453586
-
Finding sub-optimal policies faster in multi-agent systems: FQ-learning
-
Marina del Rey, CA
-
A. Kiliç, M. Kaya, and A. Arslan, "Finding sub-optimal policies faster in multi-agent systems: FQ-learning," in Proc. Int. Conf. Intelligent Autonomous Systems, Marina del Rey, CA, 2002.
-
(2002)
Proc. Int. Conf. Intelligent Autonomous Systems
-
-
Kiliç, A.1
Kaya, M.2
Arslan, A.3
-
25
-
-
0029679044
-
Reinforcement learning: A survey
-
L. P. Kaelbling, M. L. Littman, and A. W. Moore, "Reinforcement learning: a survey," Artif. Intell. Res., vol. 4, pp. 237-285, 1996.
-
(1996)
Artif. Intell. Res.
, vol.4
, pp. 237-285
-
-
Kaelbling, L.P.1
Littman, M.L.2
Moore, A.W.3
-
26
-
-
0032073263
-
Planning and acting in partially observable stochastic domains
-
L. P. Kaelbling et al., "Planning and acting in partially observable stochastic domains," Artif. Intell., vol. 101, 1998.
-
(1998)
Artif. Intell.
, vol.101
-
-
Kaelbling, L.P.1
-
28
-
-
0001341735
-
Introduction to Monte Carlo methods
-
M. I. Jordan, Ed. Cambridge, MA: MIT Press
-
D. J. C. MacKay, "Introduction to Monte Carlo methods," in Learning in Graphical Models, M. I. Jordan, Ed. Cambridge, MA: MIT Press, 1999, pp. 175-204.
-
(1999)
Learning in Graphical Models
, pp. 175-204
-
-
MacKay, D.J.C.1
-
29
-
-
34249833101
-
Technical note: Q-learning
-
C. J. C. H. Watkins and P. Dayan, "Technical note: Q-learning," Mach. Learn., vol. 8, pp. 279-292, 1992.
-
(1992)
Mach. Learn.
, vol.8
, pp. 279-292
-
-
Watkins, C.J.C.H.1
Dayan, P.2
-
30
-
-
84890606155
-
A modular approach to multi-agent reinforcement learning
-
G. Weiss, Ed. Berlin, Germany: Springer-Verlag
-
N. Ono and K. Fukomoto, "A modular approach to multi-agent reinforcement learning," in Distributed Artificial Intelligence Meets Machine Learning - Learning in Multiagent Environments, G. Weiss, Ed. Berlin, Germany: Springer-Verlag, 1997, vol. 1221, pp. 25-39.
-
(1997)
Distributed Artificial Intelligence Meets Machine Learning - Learning in Multiagent Environments
, vol.1221
, pp. 25-39
-
-
Ono, N.1
Fukomoto, K.2
-
32
-
-
0026962175
-
Reinforcement learning with a hierarchy of abstract models
-
S. P. Singh, "Reinforcement learning with a hierarchy of abstract models," in Proc. Nat. Conf. Artificial Intelligence, 1992, pp. 202-207.
-
(1992)
Proc. Nat. Conf. Artificial Intelligence
, pp. 202-207
-
-
Singh, S.P.1
-
33
-
-
0003824303
-
-
Ph.D. dissertation, Dept. Comput. Sci., Univ. Massachusetts, Boston, MA
-
_, "Learning to solve Markov decision processes," Ph.D. dissertation, Dept. Comput. Sci., Univ. Massachusetts, Boston, MA, 1994.
-
(1994)
Learning to Solve Markov Decision Processes
-
-
-
34
-
-
0032140718
-
Fuzzy inference systems learning by reinforcement methods
-
Aug.
-
L. Jouffe, "Fuzzy inference systems learning by reinforcement methods," IEEE Trans. Syst., Man, Cybern., vol. 28, no. 3, pp. 338-355, Aug. 1998.
-
(1998)
IEEE Trans. Syst., Man, Cybern.
, vol.28
, Issue.3
, pp. 338-355
-
-
Jouffe, L.1
|