메뉴 건너뛰기




Volumn 34, Issue 2, 2004, Pages 1210-1223

Modular Fuzzy-Reinforcement Learning Approach With Internal Model Capabilities for Multiagent Systems

Author keywords

Fuzziness; Internal model; Modular approach; Multiagent systems; Parallel update; Reinforcement learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTATION THEORY; COMPUTER ARCHITECTURE; CONVERGENCE OF NUMERICAL METHODS; FAULT TOLERANT COMPUTER SYSTEMS; LEARNING SYSTEMS; MATHEMATICAL MODELS; MULTI AGENT SYSTEMS;

EID: 1842535228     PISSN: 10834419     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCB.2003.821869     Document Type: Article
Times cited : (22)

References (34)
  • 1
    • 0034205975 scopus 로고    scopus 로고
    • Multiagent systems: A survey from a machine learning perspective
    • P. Stone and M. Veloso, "Multiagent systems: a survey from a machine learning perspective," Auton. Robots, vol. 8, no. 3, 2000.
    • (2000) Auton. Robots , vol.8 , Issue.3
    • Stone, P.1    Veloso, M.2
  • 3
    • 85149834820 scopus 로고
    • Markov games as a framework for multiagent reinforcement learning
    • San Francisco, CA
    • M. L. Littman, "Markov games as a framework for multiagent reinforcement learning," in Proc. Int. Conf. Machine Learning, San Francisco, CA, 1994, pp. 157-163.
    • (1994) Proc. Int. Conf. Machine Learning , pp. 157-163
    • Littman, M.L.1
  • 4
    • 0030050933 scopus 로고
    • Multiagent reinforcement learning in the iterated prisoner's dilemma
    • T. W. Sandholm and R. H. Crites, "Multiagent reinforcement learning in the iterated prisoner's dilemma," Biosystems, vol. 37, pp. 147-166, 1995.
    • (1995) Biosystems , vol.37 , pp. 147-166
    • Sandholm, T.W.1    Crites, R.H.2
  • 5
    • 85152198941 scopus 로고
    • Multi-agent reinforcement learning: Independent vs. cooperative agents
    • M. Tan, "Multi-agent reinforcement learning: independent vs. cooperative agents," in Proc. Int. Conf. Machine Learning, 1993, pp. 330-337.
    • (1993) Proc. Int. Conf. Machine Learning , pp. 330-337
    • Tan, M.1
  • 6
    • 0003326518 scopus 로고
    • Learning multiple goal behavior via task decomposition and dynamic policy merging
    • Norwell, MA: Kluwer
    • S. Whitehead, J. Karlsson, and J. Tenenberg, "Learning multiple goal behavior via task decomposition and dynamic policy merging," in Robot Learn.. Norwell, MA: Kluwer, 1993.
    • (1993) Robot Learn.
    • Whitehead, S.1    Karlsson, J.2    Tenenberg, J.3
  • 8
    • 0035978635 scopus 로고    scopus 로고
    • Modular Q-learning based multiagent cooperation for robot soccer
    • K. H. Park, Y. J. Kim, and J. H. Kim, "Modular Q-learning based multiagent cooperation for robot soccer," Robot. Auton. Syst., vol. 35, pp. 109-122, 2001.
    • (2001) Robot. Auton. Syst. , vol.35 , pp. 109-122
    • Park, K.H.1    Kim, Y.J.2    Kim, J.H.3
  • 9
    • 85151728371 scopus 로고
    • Residual algorithms: Reinforcement learning with function approximation
    • New York: Morgan Kaufmann
    • L. Baird, "Residual algorithms: reinforcement learning with function approximation," in Proceedings of the International Conference on Machine Learning. New York: Morgan Kaufmann, 1995.
    • (1995) Proceedings of the International Conference on Machine Learning
    • Baird, L.1
  • 10
    • 0000723997 scopus 로고    scopus 로고
    • Generalization in reinforcement learning: Successful examples using sparse coarse coding
    • R. S. Sutton, "Generalization in reinforcement learning: successful examples using sparse coarse coding," Adv. Neural Inf. Processing Syst., 1996.
    • (1996) Adv. Neural Inf. Processing Syst.
    • Sutton, R.S.1
  • 12
    • 0000123778 scopus 로고
    • Self-improving reactive agents based on reinforcement learning, planning and teaching
    • L. J. Lin, "Self-improving reactive agents based on reinforcement learning, planning and teaching," Mach. Learn., vol. 8, pp. 293-321, 1992.
    • (1992) Mach. Learn. , vol.8 , pp. 293-321
    • Lin, L.J.1
  • 13
    • 1842610379 scopus 로고    scopus 로고
    • Neural reinforcement learning for behavior synthesis
    • Lille, France, July
    • P. Touzet, "Neural reinforcement learning for behavior synthesis," in Proc. CESA, IMACS Multiconf., Lille, France, July 1996.
    • (1996) Proc. CESA, IMACS Multiconf.
    • Touzet, P.1
  • 14
    • 0034313638 scopus 로고    scopus 로고
    • Multiagent reinforcement learning using function approximation
    • Aug.
    • O. Abul, F. Polat, and R. Alhajj, "Multiagent reinforcement learning using function approximation," IEEE Trans. Syst., Man, Cybern. C, vol. 30, pp. 485-497, Aug. 2000.
    • (2000) IEEE Trans. Syst., Man, Cybern. C , vol.30 , pp. 485-497
    • Abul, O.1    Polat, F.2    Alhajj, R.3
  • 15
    • 0000769617 scopus 로고
    • A conflict resolution based decentralized multi-agent problem solving model
    • New York: Springer-Verlag
    • F. Polat and A. Guvenir, "A conflict resolution based decentralized multi-agent problem solving model," in Artificial Social Systems. New York: Springer-Verlag, 1994.
    • (1994) Artificial Social Systems
    • Polat, F.1    Guvenir, A.2
  • 16
    • 0029277469 scopus 로고
    • A sensor-based navigation for a mobile robot using fuzzy-logic and reinforcement learning
    • June
    • H. R. Beon and H. S. Cho, "A sensor-based navigation for a mobile robot using fuzzy-logic and reinforcement learning," IEEE Trans. Syst., Man, Cybern., vol. 25, pp. 464-477, June 1995.
    • (1995) IEEE Trans. Syst., Man, Cybern. , vol.25 , pp. 464-477
    • Beon, H.R.1    Cho, H.S.2
  • 17
    • 0033115244 scopus 로고    scopus 로고
    • An intelligent mobile vehicle navigator based on fuzzy logic and reinforcement learning
    • Apr.
    • N. H. C. Yung and C. Ye, "An intelligent mobile vehicle navigator based on fuzzy logic and reinforcement learning," IEEE Trans. Syst., Man, Cybern. B, vol. 29, pp. 314-321, Apr. 1999.
    • (1999) IEEE Trans. Syst., Man, Cybern. B , vol.29 , pp. 314-321
    • Yung, N.H.C.1    Ye, C.2
  • 18
    • 0033280134 scopus 로고    scopus 로고
    • Cooperation and coordination between fuzzy reinforcement learning agents in continuous state partially observable Markov decision processes
    • Seoul, South Korea
    • H. Berenji and D. Vengerov, "Cooperation and coordination between fuzzy reinforcement learning agents in continuous state partially observable Markov decision processes," in Proc. IEEE Int. Conf. Fuzzy Systems, vol. 2, Seoul, South Korea, 1999, pp. 621-627.
    • (1999) Proc. IEEE Int. Conf. Fuzzy Systems , vol.2 , pp. 621-627
    • Berenji, H.1    Vengerov, D.2
  • 19
    • 0033685787 scopus 로고    scopus 로고
    • Advantage of cooperation between reinforcement learning agents in difficult stochastic problems
    • San Antonio, TX
    • _, "Advantage of cooperation between reinforcement learning agents in difficult stochastic problems," in Proc. IEEE Int. Conf. Fuzzy Systems, vol. 2, San Antonio, TX, 2000, pp. 871-876.
    • (2000) Proc. IEEE Int. Conf. Fuzzy Systems , vol.2 , pp. 871-876
  • 21
    • 0000929496 scopus 로고    scopus 로고
    • Multiagent reinforcement learning: Theoretical framework and an algorithm
    • J. Hu and M. P. Wellman, "Multiagent reinforcement learning: theoretical framework and an algorithm," in Proc. Int. Conf. Machine Learning, 1998, pp. 242-250.
    • (1998) Proc. Int. Conf. Machine Learning , pp. 242-250
    • Hu, J.1    Wellman, M.P.2
  • 22
    • 0001435241 scopus 로고    scopus 로고
    • Multi-agent reinforcement learning: An approach based on the other agent's internal model
    • Boston, MA
    • Y. Nagayuki, S. Ishii, and K. Doya, "Multi-agent reinforcement learning: an approach based on the other agent's internal model," in Proc. IEEE Int. Conf. Multi-Agent Systems, Boston, MA, 2000, pp. 215-221.
    • (2000) Proc. IEEE Int. Conf. Multi-agent Systems , pp. 215-221
    • Nagayuki, Y.1    Ishii, S.2    Doya, K.3
  • 26
    • 0032073263 scopus 로고    scopus 로고
    • Planning and acting in partially observable stochastic domains
    • L. P. Kaelbling et al., "Planning and acting in partially observable stochastic domains," Artif. Intell., vol. 101, 1998.
    • (1998) Artif. Intell. , vol.101
    • Kaelbling, L.P.1
  • 28
    • 0001341735 scopus 로고    scopus 로고
    • Introduction to Monte Carlo methods
    • M. I. Jordan, Ed. Cambridge, MA: MIT Press
    • D. J. C. MacKay, "Introduction to Monte Carlo methods," in Learning in Graphical Models, M. I. Jordan, Ed. Cambridge, MA: MIT Press, 1999, pp. 175-204.
    • (1999) Learning in Graphical Models , pp. 175-204
    • MacKay, D.J.C.1
  • 29
    • 34249833101 scopus 로고
    • Technical note: Q-learning
    • C. J. C. H. Watkins and P. Dayan, "Technical note: Q-learning," Mach. Learn., vol. 8, pp. 279-292, 1992.
    • (1992) Mach. Learn. , vol.8 , pp. 279-292
    • Watkins, C.J.C.H.1    Dayan, P.2
  • 32
    • 0026962175 scopus 로고
    • Reinforcement learning with a hierarchy of abstract models
    • S. P. Singh, "Reinforcement learning with a hierarchy of abstract models," in Proc. Nat. Conf. Artificial Intelligence, 1992, pp. 202-207.
    • (1992) Proc. Nat. Conf. Artificial Intelligence , pp. 202-207
    • Singh, S.P.1
  • 33
    • 0003824303 scopus 로고
    • Ph.D. dissertation, Dept. Comput. Sci., Univ. Massachusetts, Boston, MA
    • _, "Learning to solve Markov decision processes," Ph.D. dissertation, Dept. Comput. Sci., Univ. Massachusetts, Boston, MA, 1994.
    • (1994) Learning to Solve Markov Decision Processes
  • 34
    • 0032140718 scopus 로고    scopus 로고
    • Fuzzy inference systems learning by reinforcement methods
    • Aug.
    • L. Jouffe, "Fuzzy inference systems learning by reinforcement methods," IEEE Trans. Syst., Man, Cybern., vol. 28, no. 3, pp. 338-355, Aug. 1998.
    • (1998) IEEE Trans. Syst., Man, Cybern. , vol.28 , Issue.3 , pp. 338-355
    • Jouffe, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.