메뉴 건너뛰기




Volumn 4, Issue 4, 1993, Pages 558-569

“Neural-Gas” Network for Vector Quantization and its Application to Time-Series Prediction

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; BROWNIAN MOVEMENT; DATA COMPRESSION; DATA PROCESSING; ENCODING (SYMBOLS); ERROR ANALYSIS; MATHEMATICAL TECHNIQUES; OPTIMIZATION; PERFORMANCE; TIME SERIES ANALYSIS; VECTORS;

EID: 0027632248     PISSN: 10459227     EISSN: 19410093     Source Type: Journal    
DOI: 10.1109/72.238311     Document Type: Article
Times cited : (1173)

References (33)
  • 1
    • 0021412027 scopus 로고
    • Vector quantization
    • R. M. Gray, “Vector quantization,” IEEE ASSP Mag., vol. 1, no. 2, pp. 4–29, 1984.
    • (1984) IEEE ASSP Mag. , vol.1 , Issue.2 , pp. 4-29
    • Gray, R.M.1
  • 2
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inform. Theory, vol. IT-28, p. 2, 1982.
    • (1982) IEEE Trans. Inform. Theory , vol.IT-28 , pp. 2
    • Lloyd, S.P.1
  • 3
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proc. 5th Berkeley Symp. on Mathematics, Statistics, and Probability, L. M. LeCam and J. Neyman, Eds., 1967, pp. 281–297.
    • (1967) Proc. 5th Berkeley Symp. on Mathematics, Statistics, and Probability , pp. 281-297
    • MacQueen, J.1
  • 4
    • 0000389568 scopus 로고
    • Statistical mechanics and phase transitions in clustering
    • K. Rose, F. Gurewitz, and G. Fox, “Statistical mechanics and phase transitions in clustering,” Physical Rev. Lett., vol. 65, no. 8, pp. 945–948, 1990.
    • (1990) Physical Rev. Lett. , vol.65 , Issue.8 , pp. 945-948
    • Rose, K.1    Gurewitz, F.2    Fox, G.3
  • 5
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-6, pp. 721–741, 1984.
    • (1984) IEEE Trans. Patt. Anal. Machine Intell. , vol.PAMI-6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 6
    • 0000415231 scopus 로고
    • Maximum likelihood competitive learning
    • New York: Morgan Kauffman
    • S. J. Nowlan, “Maximum likelihood competitive learning,” in Advances in Neural Information Processing Systems 2, D. Touretzky, Ed. New York: Morgan Kauffman, 1990, pp. 574–582.
    • (1990) Advances in Neural Information Processing Systems 2 , pp. 574-582
    • Nowlan, S.J.1
  • 7
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • T. Kohonen, “Self-organized formation of topologically correct feature maps,” Biological Cybern., vol. 43, pp. 59–69, 1982.
    • (1982) Biological Cybern. , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 8
    • 0019991550 scopus 로고
    • Analysis of a simple self-organizing process
    • T. Kohonen, “Analysis of a simple self-organizing process,” Biological Cybern, vol. 44, pp. 135–140, 1982.
    • (1982) Biological Cybern , vol.44 , pp. 135-140
    • Kohonen, T.1
  • 10
    • 0021617162 scopus 로고
    • Phonotopic maps—insightful representation of phonological features for speech recognition
    • Montreal
    • T. Kohonen, K. M ä kisara, and T. Saramaki, “Phonotopic maps—insightful representation of phonological features for speech recognition,” in Proc. 7th Int. Conf. on Pattern Recognition, Montreal, 1984, pp. 182–185.
    • (1984) Proc. 7th Int. Conf. on Pattern Recognition , pp. 182-185
    • Kohonen, T.1    M ä kisara, K.2    Saramaki, T.3
  • 11
    • 0022148098 scopus 로고
    • Vector quantization in speech coding
    • J. Makhoul, S. Roucos, and H. Gish, “Vector quantization in speech coding,” Proc. IEEE, vol. 73, pp. 1551–1588, 1985.
    • (1985) Proc. IEEE , vol.73 , pp. 1551-1588
    • Makhoul, J.1    Roucos, S.2    Gish, H.3
  • 12
    • 0000913674 scopus 로고
    • Topology conserving mappings for learning motor tasks
    • J. S. Denker, Ed., AIP Conf. Proc. 151, Snowbird, UT
    • H. Ritter and K. Schulten, “Topology conserving mappings for learning motor tasks,” in Neural Networks for Computing, J. S. Denker, Ed., AIP Conf. Proc. 151, Snowbird, UT, 1986, pp. 376–380.
    • (1986) Neural Networks for Computing , pp. 376-380
    • Ritter, H.1    Schulten, K.2
  • 13
    • 0024056708 scopus 로고
    • Image coding using vector quantization: A review
    • N. M. Nasrabadi and R. A. King, “Image coding using vector quantization: A review,” IEEE Trans. Commun., vol. 36, no. 8, pp. 957–971, 1988.
    • (1988) IEEE Trans. Commun. , vol.36 , Issue.8 , pp. 957-971
    • Nasrabadi, N.M.1    King, R.A.2
  • 14
    • 0024123143 scopus 로고
    • Vector quantization of images based upon the Kohonen self-organizing feature maps
    • N. M. Nasrabadi and Y. Feng, “Vector quantization of images based upon the Kohonen self-organizing feature maps,” in IEEE Int. Conf on Neural Networks, San Diego, CA, 1988, pp. 1101–1108.
    • (1988) IEEE Int. Conf on Neural Networks , pp. 1101
    • Nasrabadi, N.M.1    Feng, Y.2
  • 15
    • 0024178254 scopus 로고
    • Analysis of a neural network algorithm for vector quantization of speech parameters
    • J. Naylor and K. P. Li, “Analysis of a neural network algorithm for vector quantization of speech parameters,” in Proc. 1st Annu. INNS Meet., 1988, p. 310.
    • (1988) Proc. 1st Annu. INNS , pp. 310
    • Naylor, J.1    Li, K.P.2
  • 16
    • 0024867680 scopus 로고
    • Topology-conserving maps for learning visuomotor-coordination
    • H. Ritter, T. Martinetz, and K. Schulten, “Topology-conserving maps for learning visuomotor-coordination,” Neural Networks, vol. 2, pp. 159–168, 1988.
    • (1988) Neural Networks , vol.2 , pp. 159-168
    • Ritter, H.1    Martinetz, T.2    Schulten, K.3
  • 17
    • 0025399106 scopus 로고    scopus 로고
    • Three-dimensional neural net for learning visuomotor-coordination of a robot arm
    • T. Martinetz, H. Ritter, and K. Schulten, “Three-dimensional neural net for learning visuomotor-coordination of a robot arm,” IEEE Trans. Neural Networks, vol. 1, no. 1, pp. 131–136.
    • IEEE Trans. Neural Networks , vol.1 , Issue.1 , pp. 113-131
    • Martinetz, T.1    Ritter, H.2    Schulten, K.3
  • 18
    • 72149112822 scopus 로고
    • Learning of visuomotor coordination of a robot arm with redundant degrees of freedom
    • R. Eckmiller, G. Hartmann, and G. Hauske, Eds. Vancouver, BC, Canada
    • T. Martinetz, H. Ritter, and K. Schulten, “Learning of visuomotor coordination of a robot arm with redundant degrees of freedom,” in Proc. Int. Conf on Parallel Processing in Neural Systems and Computers 1990, R. Eckmiller, G. Hartmann, and G. Hauske, Eds., pp. 431-134; and Proc. 3rd Int. Symp. on Robotics and Manufacturing, Vancouver, BC, Canada, 1990, 521–526.
    • (1990) Proc. Int. Conf on Parallel Processing in Neural Systems and Computers , pp. 134-431
    • Martinetz, T.1    Ritter, H.2    Schulten, K.3
  • 19
    • 34250092740 scopus 로고
    • Convergence properties of Kohonen’s topology conserving maps: Fluctuations, stability and dimension selection
    • H. Ritter and K. Schulten, “Convergence properties of Kohonen’s topology conserving maps: Fluctuations, stability and dimension selection,” Biological Cybern., vol. 60, pp. 59–71, 1989.
    • (1989) Biological Cybern. , vol.60 , pp. 59-71
    • Ritter, H.1    Schulten, K.2
  • 20
    • 0025119818 scopus 로고
    • A principle for the formation of the spatial structure of cortical feature maps
    • K. Obermayer, H. Ritter, and K. Schulten, “A principle for the formation of the spatial structure of cortical feature maps,” Proc. Nat. Acad. Sci. U.S., vol. 87, pp. 8345–8349, 1990.
    • (1990) Proc. Nat. Acad. Sci. U.S. , vol.87 , pp. 8345-8349
    • Obermayer, K.1    Ritter, H.2    Schulten, K.3
  • 21
    • 0024123142 scopus 로고
    • A neural controller for collision-free movement of general robot manipulators
    • San Diego, CA
    • D. H. Graf and W. R. LaLonde, “A neural controller for collision-free movement of general robot manipulators,” in IEEE Int. Conf. on Neural Networks, San Diego, CA, 1988, pp. 77–84.
    • (1988) IEEE Int. Conf. on Neural Networks , pp. 77-84
    • Graf, D.H.1    LaLonde, W.R.2
  • 22
    • 0003023542 scopus 로고
    • Self-organizing maps: Optimization approaches
    • North Holland
    • T. Kohonen, “Self-organizing maps: Optimization approaches,” in Artificial Neural Networks, vol. II, T. Kohonen et al., Eds. Amsterdam: North Holland, 1991, pp. 981–990.
    • (1991) Artificial Neural Networks , vol.2 , pp. 981-990
    • Kohonen, T.1
  • 23
    • 0026436795 scopus 로고
    • Self-organizing maps: Ordering, convergence properties, and energy functions
    • E. Erwin, K. Obermayer, and K. Schulten, “Self-organizing maps: Ordering, convergence properties, and energy functions,” Biological Cybern., vol. 67, pp. 47–55, 1992.
    • (1992) Biological Cybern. , vol.67 , pp. 47-55
    • Erwin, E.1    Obermayer, K.2    Schulten, K.3
  • 24
    • 0015644825 scopus 로고
    • A fuzzy relative of the iso data process and its use in detecting compact well-separated clusters
    • J. C. Dunn, “A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters,” J. Cybern., vol. 3, no. 3, pp. 32–57, 1974.
    • (1974) J. Cybern. , vol.3 , Issue.3 , pp. 32-57
    • Dunn, J.C.1
  • 25
    • 0018918224 scopus 로고
    • A convergence theorem for the fuzzy isodata clustering algorithm
    • J. C. Bezdek, “A convergence theorem for the fuzzy isodata clustering algorithm,” IEEE Trans. Patt. Anal. Machine Intell., vol. 2, no. 1, pp. 1–8, 1980.
    • (1980) IEEE Trans. Patt. Anal. Machine Intell. , vol.2 , Issue.1 , pp. 1-8
    • Bezdek, J.C.1
  • 26
    • 0023834037 scopus 로고
    • Applications of counterpropagation networks
    • R. Hecht-Nielsen, “Applications of counterpropagation networks,” Neural Networks, vol. 1, no. 2, pp. 131–141, 1988.
    • (1988) Neural Networks , vol.1 , Issue.2 , pp. 131-141
    • Hecht-Nielsen, R.1
  • 27
    • 0000672424 scopus 로고
    • Fast learning in networks of locally tuned processing units
    • J. Moody and C. J. Darken, “Fast learning in networks of locally tuned processing units,” Neural Computation, vol. 1, pp. 281–294, 1989.
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 28
    • 11544285944 scopus 로고    scopus 로고
    • Industrial robot learns visuomotor coordination by means of neural-gas network
    • T. Kohonen et al., Eds. Amsterdam: North Holland
    • J. Walter, T. Martinetz, and K. Schulten, “Industrial robot learns visuomotor coordination by means of neural-gas network,” in Artificial Neural Networks, vol. I, T. Kohonen et al., Eds. Amsterdam: North Holland, pp. 357–364.
    • Artificial Neural Networks , vol.1 , pp. 357-364
    • Walter, J.1    Martinetz, T.2    Schulten, K.3
  • 29
    • 0020100081 scopus 로고
    • Asymptotic quantization error of continuous signals and the quantization dimension
    • P. I. Zador, “Asymptotic quantization error of continuous signals and the quantization dimension,” IEEE Trans. Inform. Theory, vol. IT-28, no. 2, pp. 139–149, 1982.
    • (1982) IEEE Trans. Inform. Theory , vol.IT-28 , Issue.2 , pp. 139-149
    • Zador, P.I.1
  • 30
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • M. Mackey and L. Glass, “Oscillation and chaos in physiological control systems,” Science, vol. 197, p. 287, 1977.
    • (1977) Science , vol.197 , pp. 287
    • Mackey, M.1    Glass, L.2
  • 31
    • 0025550401 scopus 로고
    • Nonlinear prediction with self-organizing maps
    • San Diego, CA
    • J. Walter, H. Ritter, and K. Schulten, “Nonlinear prediction with self-organizing maps,” in IJCNN-90 Conf. Proc., vol. III, San Diego, CA, 1990, pp. 589–594.
    • (1990) IJCNN-90 Conf. Proc. , vol.3 , pp. 589-594
    • Walter, J.1    Ritter, H.2    Schulten, K.3
  • 32
    • 0003645482 scopus 로고
    • Nonlinear signal processing using neural networks: Prediction and system modelling
    • Los Alamos National Laboratory, Los Alamos, NM
    • A. Lapedes and R. Farber, “Nonlinear signal processing using neural networks: Prediction and system modelling,” Technical Report LA-UR-87-2662, Los Alamos National Laboratory, Los Alamos, NM, 1988.
    • (1988) Technical Report LA-UR-87-2662
    • Lapedes, A.1    Farber, R.2
  • 33
    • 0025199496 scopus 로고
    • Nonlinear forecasting as a way of distinguishing chaos from measurement error in time-series
    • G. Sugihara and R. May, “Nonlinear forecasting as a way of distinguishing chaos from measurement error in time-series,” Nature, vol. 344, pp. 734–740, 1990.
    • (1990) and R. May , vol.344 , pp. 734-740
    • Sugihara, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.