메뉴 건너뛰기




Volumn 6, Issue 5, 2007, Pages 718-724

Machine learning technique approaches in drug discovery, design and development

Author keywords

DNA; Drug; Maccroarray; Protein; QSAR; SVM

Indexed keywords

BIOINFORMATICS; DNA; DRUG PRODUCTS; GENETIC PROGRAMMING; PROTEINS;

EID: 34748889655     PISSN: 18125638     EISSN: 18125646     Source Type: Journal    
DOI: 10.3923/itj.2007.718.724     Document Type: Article
Times cited : (15)

References (26)
  • 1
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • Boser et al., 1992. A training algorithm for optimal margin classifiers. 5th Annual ACM Workshop, COLT, 1992.
    • (1992) 5th Annual ACM Workshop, COLT
    • Boser1
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, 2001. Random forests. Machine Learning, 45: 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman1
  • 3
    • 20144379765 scopus 로고    scopus 로고
    • Exploring functional relationships between components of gene expression machinery
    • Burckin et al., 2005. Exploring functional relationships between components of gene expression machinery. Nat. Struct. Mol. Biol., 12: 175-182.
    • (2005) Nat. Struct. Mol. Biol , vol.12 , pp. 175-182
    • Burckin1
  • 5
    • 35048847106 scopus 로고    scopus 로고
    • Evolving Regular Expression-based Sequence Classifiers for Protein Nuclear Localization
    • Applications of Evolutionary Computing. Raidl et al, Eds
    • Heddad et al., 2004. Evolving Regular Expression-based Sequence Classifiers for Protein Nuclear Localization. In: Applications of Evolutionary Computing. Raidl et al. (Eds.), LNCS 3005, pp: 31-40.
    • (2004) LNCS , vol.3005 , pp. 31-40
    • Heddad1
  • 6
    • 1642350394 scopus 로고    scopus 로고
    • Recent development and application of virtual screening in drug discovery
    • Hou and Xu, 2004. Recent development and application of virtual screening in drug discovery. An overview. Curr. Pharma. Design, 10: 1011-1033.
    • (2004) An overview. Curr. Pharma. Design , vol.10 , pp. 1011-1033
    • Hou1    Xu2
  • 7
    • 0036166451 scopus 로고    scopus 로고
    • Classifying G-protein coupled receptors with support vector machines
    • Karchin et al., 2002. Classifying G-protein coupled receptors with support vector machines. Bioinformatics, 18: 147-159.
    • (2002) Bioinformatics , vol.18 , pp. 147-159
    • Karchin1
  • 8
    • 8844263749 scopus 로고    scopus 로고
    • A statistical framework for genomic data fusion
    • Lanckriet et al., 2004. A statistical framework for genomic data fusion. Bioinformatics, 20: 2626-2635.
    • (2004) Bioinformatics , vol.20 , pp. 2626-2635
    • Lanckriet1
  • 10
    • 11244255299 scopus 로고    scopus 로고
    • QSAR and classification models of a novel series of COX-2 selective inhibitors: 1, 5-diary limidazoles based on support vector machines
    • Liu et al., 2004. QSAR and classification models of a novel series of COX-2 selective inhibitors: 1, 5-diary limidazoles based on support vector machines. J. Comput. Aided Mol. Design, 18: 389-399.
    • (2004) J. Comput. Aided Mol. Design , vol.18 , pp. 389-399
    • Liu1
  • 12
    • 0037038314 scopus 로고    scopus 로고
    • Multiob jective optimization in quantitative structure-activity relationships: Deriving accurate and interpretable QSARs
    • Nicolotti et al., 2002. Multiob jective optimization in quantitative structure-activity relationships: Deriving accurate and interpretable QSARs. J. Med. Chem., 45: 5069-5080.
    • (2002) J. Med. Chem , vol.45 , pp. 5069-5080
    • Nicolotti1
  • 13
    • 0035742528 scopus 로고    scopus 로고
    • Continuing evolution of the drug discovery process in the pharmaceutical industry
    • Ratti and Trist, 2001. Continuing evolution of the drug discovery process in the pharmaceutical industry. Pure Applied Chem., 73: 67-75.
    • (2001) Pure Applied Chem , vol.73 , pp. 67-75
    • Ratti1    Trist2
  • 14
    • 12844275916 scopus 로고    scopus 로고
    • Reif et al., 2004. Integrated analysis of genetic, genomic and proteomic data. Expert Rev. Proteomics, 1: 67-75.
    • Reif et al., 2004. Integrated analysis of genetic, genomic and proteomic data. Expert Rev. Proteomics, 1: 67-75.
  • 15
    • 0036633359 scopus 로고    scopus 로고
    • Genome-based pharmacogenetics and the pharmaceutical industry
    • Roses, 2002. Genome-based pharmacogenetics and the pharmaceutical industry. Nat. Rev. Drug Discov., 1: 541-549.
    • (2002) Nat. Rev. Drug Discov , vol.1 , pp. 541-549
    • Roses1
  • 16
    • 4644271084 scopus 로고    scopus 로고
    • Magic shotguns versus magic bullets: Selectively non-selective drugs for mood disorders and schizophrenia
    • Roth et al., 2004. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug Discovery, 3: 353-359.
    • (2004) Nat. Rev. Drug Discovery , vol.3 , pp. 353-359
    • Roth1
  • 17
    • 34748905881 scopus 로고    scopus 로고
    • Kernel Methods for Pattern Analysis. Cambridge University Press
    • Shawe-Taylor and Cristianini, 2004. Kernel Methods for Pattern Analysis. Cambridge University Press. ISBN: 0 521 81397 2.
    • (2004) ISBN
    • Shawe-Taylor1    Cristianini2
  • 19
    • 5444267543 scopus 로고    scopus 로고
    • Hybridized particle swarm algorithm for adaptive structure training of multilayer feed-forward neural network. QSAR studies of bioactivity of organic compounds
    • Shen et al., 2004. Hybridized particle swarm algorithm for adaptive structure training of multilayer feed-forward neural network. QSAR studies of bioactivity of organic compounds. J. Computational Chem., 25: 1726-1735.
    • (2004) J. Computational Chem , vol.25 , pp. 1726-1735
    • Shen1
  • 20
    • 34748853045 scopus 로고    scopus 로고
    • GPCR and G-protein Coupling Selectivity Prediction Based on SVM with Physico-Chemical Parameters
    • Suwa et al., 2004. GPCR and G-protein Coupling Selectivity Prediction Based on SVM with Physico-Chemical Parameters. GIW 2004. Poster Abstract: P056. http://www.jsbi.org/journal/GIW04/GIW04Poster.html.
    • (2004) Poster Abstract , vol.GIW 2004
    • Suwa1
  • 21
    • 0040864988 scopus 로고
    • Principles of Risk Minimization for Learning Theory
    • Moody, J.E, S.J. Hanson and R.P. Lippmann Eds, Morgan Kaufmann Publishers, Inc
    • Vapnik, V., 1992. Principles of Risk Minimization for Learning Theory. In: Advances in Neural Information Processing Systems. Moody, J.E., S.J. Hanson and R.P. Lippmann (Eds.), Vol. 4; Morgan Kaufmann Publishers, Inc.
    • (1992) Advances in Neural Information Processing Systems , vol.4
    • Vapnik, V.1
  • 23
    • 34748829085 scopus 로고    scopus 로고
    • Wang et al., 2004. Particle swarm optimization and neural network application for QSAR. In HiCOMB.
    • Wang et al., 2004. Particle swarm optimization and neural network application for QSAR. In HiCOMB.
  • 24
    • 34748821691 scopus 로고    scopus 로고
    • Xiao et al., 2003. Gene clustering using self-organizing maps and particle swarm optimization. In HiCOMB.
    • Xiao et al., 2003. Gene clustering using self-organizing maps and particle swarm optimization. In HiCOMB.
  • 25
    • 0038255018 scopus 로고    scopus 로고
    • Chemoinformatics and drug discovery
    • Xu and Hagler, 2002. Chemoinformatics and drug discovery. Molecules, 7: 566-600.
    • (2002) Molecules , vol.7 , pp. 566-600
    • Xu1    Hagler2
  • 26
    • 34748816751 scopus 로고    scopus 로고
    • Neural Networks in Chemistry and Drug Design
    • 2nd Edn, John Wiley, ISBN: 3-527-29778-2, pp
    • Zupan and Gasteiger, 1999. Neural Networks in Chemistry and Drug Design. An Introduction. 2nd Edn., John Wiley, ISBN: 3-527-29778-2, pp: 400.
    • (1999) An Introduction , pp. 400
    • Zupan1    Gasteiger2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.