메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Finding hyperspectral anomalies using multivariate outlier detection

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; DATA REDUCTION; DATABASE SYSTEMS; ERROR DETECTION; IMAGE ANALYSIS;

EID: 34548799179     PISSN: 1095323X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/AERO.2007.353062     Document Type: Conference Paper
Times cited : (30)

References (56)
  • 1
    • 0032680362 scopus 로고    scopus 로고
    • A Fast Algorithm for the Minimum Covariance Determinant Estimator
    • August
    • P. J. Rousseeuw and K. van Driessen, "A Fast Algorithm for the Minimum Covariance Determinant Estimator," Technometrics, 41, 212-223, August 1999.
    • (1999) Technometrics , vol.41 , pp. 212-223
    • Rousseeuw, P.J.1    van Driessen, K.2
  • 3
    • 13144306114 scopus 로고    scopus 로고
    • A Cluster-based Approach for Detecting Man-made Objects and Changes in Imagery
    • February
    • M. J. Carlotto, "A Cluster-based Approach for Detecting Man-made Objects and Changes in Imagery," IEEE Transactions on Geoscience and Remote Sensing, 43, 374-387, February 2005.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , pp. 374-387
    • Carlotto, M.J.1
  • 4
    • 85032751921 scopus 로고    scopus 로고
    • Anomaly Detection for Hyperspectral Imagery
    • January
    • D. W. J. Stein, S. G. Beaven, et al., "Anomaly Detection for Hyperspectral Imagery," IEEE Signal Processing Magazine, 19, 58-69, January 2002.
    • (2002) IEEE Signal Processing Magazine , vol.19 , pp. 58-69
    • Stein, D.W.J.1    Beaven, S.G.2
  • 7
    • 0025508756 scopus 로고
    • Adaptive Multiple-Band CFAR Detection of an Optical Pattern with Unknown Spectral Distribution
    • October, 1990
    • I. S. Reed and X. Yu, "Adaptive Multiple-Band CFAR Detection of an Optical Pattern with Unknown Spectral Distribution," IEEE Proceedings on Acoustics, Speech, and Signal Processing, 38, 1760-1770, October 1990.
    • (1760) IEEE Proceedings on Acoustics, Speech, and Signal Processing , vol.38
    • Reed, I.S.1    Yu, X.2
  • 8
    • 0035305896 scopus 로고    scopus 로고
    • Real-time Processing Algorithms for Target Detection and Classification in Hyperspectral Imagery
    • April
    • C.-I. Chang and S.-S. Chiang, "Real-time Processing Algorithms for Target Detection and Classification in Hyperspectral Imagery," IEEE Transactions on Geoscience and Remote Sensing, 39, 760-768, April 2001.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , pp. 760-768
    • Chang, C.-I.1    Chiang, S.-S.2
  • 10
    • 15844383466 scopus 로고    scopus 로고
    • R. Riley, R. K. Newsom and A. K. Andrews, Anomaly Detection in Noisy Hyperspectral Imagery, SPIE Conference on Imaging Spectrometry X, 5546, 159-170, 2004.
    • R. Riley, R. K. Newsom and A. K. Andrews, "Anomaly Detection in Noisy Hyperspectral Imagery," SPIE Conference on Imaging Spectrometry X, 5546, 159-170, 2004.
  • 11
    • 13144293109 scopus 로고    scopus 로고
    • Kernel RX-Algorithm: A Nonlinear Anomaly Detector for Hyperspectral Imagery
    • February
    • H. Kwon and N. M. Nasrabadi, "Kernel RX-Algorithm: A Nonlinear Anomaly Detector for Hyperspectral Imagery," IEEE Transactions on Geoscience and Remote Sensing, 43, 388-397, February 2005.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , pp. 388-397
    • Kwon, H.1    Nasrabadi, N.M.2
  • 13
    • 11244309418 scopus 로고    scopus 로고
    • Joint Subspace Detection of Hyperspectral Targets
    • 1818-1824, March
    • A. P. Schaum, "Joint Subspace Detection of Hyperspectral Targets," Proceedings of the 2004 IEEE Aerospace Conference, 3, 1818-1824, 6-13 March 2004.
    • (2004) Proceedings of the 2004 IEEE Aerospace Conference , vol.3 , pp. 6-13
    • Schaum, A.P.1
  • 14
    • 34047130822 scopus 로고    scopus 로고
    • A Remedy for Nonstationarity in Background Transition Regions for Real Time Hyperspectral Detection
    • March
    • A. P. Schaum, "A Remedy for Nonstationarity in Background Transition Regions for Real Time Hyperspectral Detection," Proceedings of the 2006 IEEE Aerospace Conference, 4-11 March 2006.
    • (2006) Proceedings of the 2006 IEEE Aerospace Conference, 4-11
    • Schaum, A.P.1
  • 15
    • 0347603473 scopus 로고    scopus 로고
    • Adaptive Anomaly Detection Using Subspace Separation for Hyperspectral Imagery
    • November
    • H. Kwon, S. Z. Der and N. M. Nasrabadi, "Adaptive Anomaly Detection Using Subspace Separation for Hyperspectral Imagery," Optical Engineering, 42, 3342-3351, November 2003.
    • (2003) Optical Engineering , vol.42 , pp. 3342-3351
    • Kwon, H.1    Der, S.Z.2    Nasrabadi, N.M.3
  • 18
    • 34548728686 scopus 로고    scopus 로고
    • Detection of Local Anomalies in High Resolution Hyperspectral Imagery Using Geostatistical Filtering and Local Spatial Statistics
    • P. Goovaerts, G. Jacquez, et al., "Detection of Local Anomalies in High Resolution Hyperspectral Imagery Using Geostatistical Filtering and Local Spatial Statistics," 2003 IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 1, 385-394, 2004.
    • (2004) 2003 IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data , vol.1 , pp. 385-394
    • Goovaerts, P.1    Jacquez, G.2
  • 20
    • 0034248248 scopus 로고    scopus 로고
    • Hyperspectral Imagery: Clutter Adaptation in Anomaly Detection
    • August
    • S. M. Schweizer and J. M. F. Moura, "Hyperspectral Imagery: Clutter Adaptation in Anomaly Detection," IEEE Transactions on Information Theory, 46, 1855-1871, August 2000.
    • (2000) IEEE Transactions on Information Theory , vol.46 , pp. 1855-1871
    • Schweizer, S.M.1    Moura, J.M.F.2
  • 22
    • 0033716413 scopus 로고    scopus 로고
    • Multivariate Gaussian MRF for Multispectral Scene Segmentation and Anomaly Detection
    • May
    • G. Hazel, "Multivariate Gaussian MRF for Multispectral Scene Segmentation and Anomaly Detection," IEEE Transactions on Geoscience and Remote Sensing, 38, 1199-1211, May 2000.
    • (2000) IEEE Transactions on Geoscience and Remote Sensing , vol.38 , pp. 1199-1211
    • Hazel, G.1
  • 24
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An Algorithm for Fast Autonomous Spectral End-Member Determination in Hyperspectral Data
    • July
    • M. E. Winter, "N-FINDR: An Algorithm for Fast Autonomous Spectral End-Member Determination in Hyperspectral Data," SPIE Conference on Imaging Spectrometry V, 3753, 266-275, July 1999.
    • (1999) SPIE Conference on Imaging Spectrometry , vol.3753 , pp. 266-275
    • Winter, M.E.1
  • 27
    • 0030287048 scopus 로고
    • The Expectation-Maximization Algorithm
    • May
    • T. K. Moon, "The Expectation-Maximization Algorithm," IEEE Signal Processing Magazine, 31, 47-60, May 1993.
    • (1993) IEEE Signal Processing Magazine , vol.31 , pp. 47-60
    • Moon, T.K.1
  • 28
    • 15844423011 scopus 로고    scopus 로고
    • S. Catterall, Anomaly Detection Based on the Statistics of Hyperspectral Imagery, SPIE Conference on Imagery Spectroscopy X, 5546, 171-178, 2004.
    • S. Catterall, "Anomaly Detection Based on the Statistics of Hyperspectral Imagery," SPIE Conference on Imagery Spectroscopy X, 5546, 171-178, 2004.
  • 30
    • 17644391404 scopus 로고    scopus 로고
    • V. Achard, A. Landrevie and J. C. Fort, Anomalies Detection in Hyperspectral Imagery Using Projection Pursuit Algorithm, SPIE Conference on Image and Signal Processing for Remote Sensing X, 5573, 193-202, 2004.
    • V. Achard, A. Landrevie and J. C. Fort, "Anomalies Detection in Hyperspectral Imagery Using Projection Pursuit Algorithm," SPIE Conference on Image and Signal Processing for Remote Sensing X, 5573, 193-202, 2004.
  • 31
    • 0002954125 scopus 로고
    • Robust Estimates, Residuals, and Outlier Detection with Multiresponse Data
    • March
    • R. Gnanadesikan and J. R. Kettenring, "Robust Estimates, Residuals, and Outlier Detection with Multiresponse Data," Biometrics, 28, 81-124, March 1972.
    • (1972) Biometrics , vol.28 , pp. 81-124
    • Gnanadesikan, R.1    Kettenring, J.R.2
  • 32
    • 0001011286 scopus 로고
    • Robust Procedures in Multivariate Analysis I: Robust Covariance Estimation
    • N. A. Campbell, "Robust Procedures in Multivariate Analysis I: Robust Covariance Estimation," Applied Statistics, 29, 231-237, 1980.
    • (1980) Applied Statistics , vol.29 , pp. 231-237
    • Campbell, N.A.1
  • 33
    • 0002063041 scopus 로고
    • Robust M-Estimators of Multivariate Location and Scatter
    • January
    • R. A. Maronna, "Robust M-Estimators of Multivariate Location and Scatter," The Annals of Statistics, 4, 51-67, January 1976.
    • (1976) The Annals of Statistics , vol.4 , pp. 51-67
    • Maronna, R.A.1
  • 38
    • 0000329041 scopus 로고
    • A Modification of a Method for the Detection of Outliers in Multivariate Samples
    • A. S. Hadi, "A Modification of a Method for the Detection of Outliers in Multivariate Samples," Journal of the Royal Statistical Society, Series B, 56, 393-396, 1994.
    • (1994) Journal of the Royal Statistical Society, Series B , vol.56 , pp. 393-396
    • Hadi, A.S.1
  • 39
    • 21844510157 scopus 로고
    • Fast Very Robust Methods for the Detection of Multiple Outliers
    • December
    • A. C. Atkinson, "Fast Very Robust Methods for the Detection of Multiple Outliers," Journal of the American Statistical Association, 89, 1329-1339, December 1994.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 1329-1339
    • Atkinson, A.C.1
  • 41
    • 0032576626 scopus 로고    scopus 로고
    • A Procedure for the Detection of Multivariate Outliers
    • A. S. Kosinski, "A Procedure for the Detection of Multivariate Outliers," Computational Statistics & Data Analysis, 29, 145-161, 1999.
    • (1999) Computational Statistics & Data Analysis , vol.29 , pp. 145-161
    • Kosinski, A.S.1
  • 42
    • 21344481802 scopus 로고
    • Asymptotics for the Minimum Covariance Determinant Estimator
    • R. W. Butler, P. L. Davies and M. Jhun, "Asymptotics for the Minimum Covariance Determinant Estimator," The Annals of Statistics, 21, 1385-1400, 1993.
    • (1993) The Annals of Statistics , vol.21 , pp. 1385-1400
    • Butler, R.W.1    Davies, P.L.2    Jhun, M.3
  • 43
    • 21144467678 scopus 로고
    • The Asymptotics of Rousseeuw's Minimum Volume Ellipsoid Estimator
    • L. Davies, "The Asymptotics of Rousseeuw's Minimum Volume Ellipsoid Estimator," The Annals of Statistics, 20, 1828-1843, 1992.
    • (1992) The Annals of Statistics , vol.20 , pp. 1828-1843
    • Davies, L.1
  • 44
    • 0000559699 scopus 로고
    • The Feasible Solution Algorithm for the Minimum Covariance Determinant Estimator in Multivariate Data
    • D. M. Hawkins, "The Feasible Solution Algorithm for the Minimum Covariance Determinant Estimator in Multivariate Data," Computational Statistics & Data Analysis, 17, 197-210, 1994.
    • (1994) Computational Statistics & Data Analysis , vol.17 , pp. 197-210
    • Hawkins, D.M.1
  • 46
    • 0037189770 scopus 로고    scopus 로고
    • Identifying Multivariate Discordant Observations: A Computer-Intensive Approach
    • H. Viljoen and J. H. Venter, "Identifying Multivariate Discordant Observations: A Computer-Intensive Approach," Computational Statistics & Data Analysis, 40, 159-172, 2002.
    • (2002) Computational Statistics & Data Analysis , vol.40 , pp. 159-172
    • Viljoen, H.1    Venter, J.H.2
  • 47
    • 0001268633 scopus 로고    scopus 로고
    • Outlier Detection in Multivariate Analytical Chemical Data
    • June
    • W. J. Egan and S. L. Morgan, "Outlier Detection in Multivariate Analytical Chemical Data," Analytical Chemistry, 70, 2372-2379, June 1998.
    • (1998) Analytical Chemistry , vol.70 , pp. 2372-2379
    • Egan, W.J.1    Morgan, S.L.2
  • 48
    • 0037411806 scopus 로고    scopus 로고
    • Exploring Process Data with the Use of Robust Outlier Detection Algorithms
    • L. H. Chiang, R. J. Pell and M. B. Seasholtz, "Exploring Process Data with the Use of Robust Outlier Detection Algorithms," Journal of Process Control, 13, 437-449, 2003.
    • (2003) Journal of Process Control , vol.13 , pp. 437-449
    • Chiang, L.H.1    Pell, R.J.2    Seasholtz, M.B.3
  • 49
    • 0344513198 scopus 로고    scopus 로고
    • Outlier Detection in the Multiple Cluster Setting Using the Minimum Covariance Determinant Estimator
    • J. Hardin and D. M. Rocke, "Outlier Detection in the Multiple Cluster Setting Using the Minimum Covariance Determinant Estimator," Computational Statistics & Data Analysis, 44, 625-638, 2004.
    • (2004) Computational Statistics & Data Analysis , vol.44 , pp. 625-638
    • Hardin, J.1    Rocke, D.M.2
  • 51
    • 26944471219 scopus 로고    scopus 로고
    • Multivariate Outliers and Decompositions of Mahalanobis Distance
    • M. G. Kim, "Multivariate Outliers and Decompositions of Mahalanobis Distance," Communications in StatisticsTheory and Methods, 29, 1511-1526, 2000.
    • (2000) Communications in StatisticsTheory and Methods , vol.29 , pp. 1511-1526
    • Kim, M.G.1
  • 52
    • 0009872147 scopus 로고    scopus 로고
    • Multiple Outlier Detection in Multivariate Data Using Projection Pursuit Techniques
    • J.-X. Pan, W.-K. Fung and K.-T. Fang, "Multiple Outlier Detection in Multivariate Data Using Projection Pursuit Techniques," Journal of Statistical Planning and Inference, 83, 153-167, 2000.
    • (2000) Journal of Statistical Planning and Inference , vol.83 , pp. 153-167
    • Pan, J.-X.1    Fung, W.-K.2    Fang, K.-T.3
  • 53
    • 0035420427 scopus 로고    scopus 로고
    • Using Angles to Identify Concentrated Multivariate Outliers
    • August
    • J. Juan and F. J. Prieto, "Using Angles to Identify Concentrated Multivariate Outliers," Journal of the American Statistical Association, 43, 311-322, August 2001.
    • (2001) Journal of the American Statistical Association , vol.43 , pp. 311-322
    • Juan, J.1    Prieto, F.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.