메뉴 건너뛰기




Volumn 28, Issue 15, 2007, Pages 2054-2062

Semismooth Newton support vector machine

Author keywords

Cholesky factorization; Lagrangian dual; Semismooth; Support vector machines

Indexed keywords

COMPUTATIONAL EFFICIENCY; CONSTRAINT THEORY; FACTORIZATION; FEATURE EXTRACTION; PROBLEM SOLVING; QUADRATIC PROGRAMMING;

EID: 34548701574     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2007.06.010     Document Type: Article
Times cited : (11)

References (34)
  • 2
    • 0000667930 scopus 로고    scopus 로고
    • Training v-Support vector classifiers: Theory and algorithms
    • Chang C.-C., and Li C.-J. Training v-Support vector classifiers: Theory and algorithms. Neural Comput. 13 (2001) 2119-2147
    • (2001) Neural Comput. , vol.13 , pp. 2119-2147
    • Chang, C.-C.1    Li, C.-J.2
  • 3
    • 34548660918 scopus 로고    scopus 로고
    • Chang, C.-C., Lin, C.-J., 2005. LIBSVM-A Library for Support Vector Machines. .
  • 4
    • 34548663998 scopus 로고    scopus 로고
    • Chen, P.-H, Fan, R.-E., Lin, C.-J., 2005. A Study on SMO-type Decomposition Methods for Support Vector Machines. .
  • 6
  • 7
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • Fine S., and Scheinberg K. Efficient SVM training using low-rank kernel representations. J. Mach. Learn. Res. 2 (2001) 243-264
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 8
    • 34548691956 scopus 로고    scopus 로고
    • Ho, T.K., Kleinberg, E.M. Checkerboard Dataset, 1996. .
  • 9
    • 34548692853 scopus 로고    scopus 로고
    • light, 1998. .
  • 10
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • Schölkopf B., et al. (Ed), MIT Press, Cambridge, MA
    • Joachims T. Making large-scale SVM learning practical. In: Schölkopf B., et al. (Ed). Advances in Kernel Method-Support Vector Learning (1999), MIT Press, Cambridge, MA
    • (1999) Advances in Kernel Method-Support Vector Learning
    • Joachims, T.1
  • 11
    • 0000545946 scopus 로고    scopus 로고
    • Improvements to Platt's SMO algorithm for SVM classifier design
    • Keerthi S., Shevade S., Bhattacharyya C., and Murthy K. Improvements to Platt's SMO algorithm for SVM classifier design. Neural Comput. 13 (2001) 637-649
    • (2001) Neural Comput. , vol.13 , pp. 637-649
    • Keerthi, S.1    Shevade, S.2    Bhattacharyya, C.3    Murthy, K.4
  • 13
    • 0035506741 scopus 로고    scopus 로고
    • On the convergence of the decomposition method for support vector machines
    • Lin C.-J. On the convergence of the decomposition method for support vector machines. IEEE Trans. Neural Networks 12 (2001) 1288-1298
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 1288-1298
    • Lin, C.-J.1
  • 14
    • 0036129250 scopus 로고    scopus 로고
    • Asymptotic convergence of an SMO algorithm without any assumptions
    • Lin C.-J. Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Trans. Neural Networks 13 (2002) 248-250
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 248-250
    • Lin, C.-J.1
  • 15
    • 0042185149 scopus 로고    scopus 로고
    • An incomplete Cholesky factorization for dense matrices
    • Lin C.-J., and Saigal R. An incomplete Cholesky factorization for dense matrices. BIT 40 (2000) 536-558
    • (2000) BIT , vol.40 , pp. 536-558
    • Lin, C.-J.1    Saigal, R.2
  • 16
    • 0000042397 scopus 로고    scopus 로고
    • Bound constrained quadratic programming via piecewise quadratic functions
    • Madsen K., Nielsen H.B., and Pinar M.C. Bound constrained quadratic programming via piecewise quadratic functions. Math. Programm. 85 1 (1999) 135-156
    • (1999) Math. Programm. , vol.85 , Issue.1 , pp. 135-156
    • Madsen, K.1    Nielsen, H.B.2    Pinar, M.C.3
  • 18
    • 0032594961 scopus 로고    scopus 로고
    • Successive overrelaxation for support vector machines
    • Mangasarian O.L., and Musicant D.R. Successive overrelaxation for support vector machines. IEEE Trans. Neural Networks 10 (1999) 1032-1037
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 1032-1037
    • Mangasarian, O.L.1    Musicant, D.R.2
  • 21
    • 34548670591 scopus 로고    scopus 로고
    • Murphy, P.M., Aha, D.W., 1992. UCI Repository of Machine Learning Databases. .
  • 22
    • 34548673639 scopus 로고    scopus 로고
    • Musicant, D.R., 1998. NDC: Normally Distributed Clustered Datasets. .
  • 23
    • 34548680164 scopus 로고    scopus 로고
    • Musicant, D.R., Managsarian, O.L., 2000. LSVM: Lagrangian Support Vector Machine. .
  • 24
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Schölkopf B. (Ed), MIT Press, Cambridge
    • Platt J.C. Fast training of support vector machines using sequential minimal optimization. In: Schölkopf B. (Ed). Advances in Kernel Method-Support Vector Learning (1999), MIT Press, Cambridge 185-208
    • (1999) Advances in Kernel Method-Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 25
    • 0003203460 scopus 로고    scopus 로고
    • A survey of some nonsmooth equations and smoothing Newton methods
    • Progress in Optimization. Eberhard A., Glover B., Hill R., and Ralph D. (Eds), Kluwer Academic Publishers, Dordrecht
    • Qi L., and Sun D. A survey of some nonsmooth equations and smoothing Newton methods. In: Eberhard A., Glover B., Hill R., and Ralph D. (Eds). Progress in Optimization. Applied Optimization vol. 30 (1999), Kluwer Academic Publishers, Dordrecht 121-146
    • (1999) Applied Optimization , vol.30 , pp. 121-146
    • Qi, L.1    Sun, D.2
  • 28
    • 0000919259 scopus 로고    scopus 로고
    • On piecewise quadratic Newton and trust region problems
    • Sun J. On piecewise quadratic Newton and trust region problems. Math. Programm. 76 (1997) 451-467
    • (1997) Math. Programm. , vol.76 , pp. 451-467
    • Sun, J.1
  • 29
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik V.N. An overview of statistical learning theory. IEEE Trans. Neural Network 10 (1999) 988-999
    • (1999) IEEE Trans. Neural Network , vol.10 , pp. 988-999
    • Vapnik, V.N.1
  • 31
    • 34548672866 scopus 로고    scopus 로고
    • Lower dimension Newton-algorithm for training the support vector machines
    • (in Chinese)
    • Zhou S.-S., and Zhou L.-H. Lower dimension Newton-algorithm for training the support vector machines. Syst. Eng. Electron. 26 (2004) 1315-1318 (in Chinese)
    • (2004) Syst. Eng. Electron. , vol.26 , pp. 1315-1318
    • Zhou, S.-S.1    Zhou, L.-H.2
  • 33
    • 27944479599 scopus 로고    scopus 로고
    • A maximum entropy method for training the support vector machines
    • (in Chinese)
    • Zhou S.-S., Rong X.-F., and Zhou L.-H. A maximum entropy method for training the support vector machines. Signal Process. 19 (2003) 595-599 (in Chinese)
    • (2003) Signal Process. , vol.19 , pp. 595-599
    • Zhou, S.-S.1    Rong, X.-F.2    Zhou, L.-H.3
  • 34
    • 0345330238 scopus 로고    scopus 로고
    • Experimental study on the performance of support vector machine with squared cost function
    • (in Chinese)
    • Zhu Y.-S., Wang C.-D., and Zhang Y.-Y. Experimental study on the performance of support vector machine with squared cost function. Chinese J. Comput. 26 (2003) 982-989 (in Chinese)
    • (2003) Chinese J. Comput. , vol.26 , pp. 982-989
    • Zhu, Y.-S.1    Wang, C.-D.2    Zhang, Y.-Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.