-
2
-
-
0000667930
-
Training v-Support vector classifiers: Theory and algorithms
-
Chang C.-C., and Li C.-J. Training v-Support vector classifiers: Theory and algorithms. Neural Comput. 13 (2001) 2119-2147
-
(2001)
Neural Comput.
, vol.13
, pp. 2119-2147
-
-
Chang, C.-C.1
Li, C.-J.2
-
3
-
-
34548660918
-
-
Chang, C.-C., Lin, C.-J., 2005. LIBSVM-A Library for Support Vector Machines. .
-
-
-
-
4
-
-
34548663998
-
-
Chen, P.-H, Fan, R.-E., Lin, C.-J., 2005. A Study on SMO-type Decomposition Methods for Support Vector Machines. .
-
-
-
-
7
-
-
0041494125
-
Efficient SVM training using low-rank kernel representations
-
Fine S., and Scheinberg K. Efficient SVM training using low-rank kernel representations. J. Mach. Learn. Res. 2 (2001) 243-264
-
(2001)
J. Mach. Learn. Res.
, vol.2
, pp. 243-264
-
-
Fine, S.1
Scheinberg, K.2
-
8
-
-
34548691956
-
-
Ho, T.K., Kleinberg, E.M. Checkerboard Dataset, 1996. .
-
-
-
-
9
-
-
34548692853
-
-
light, 1998. .
-
-
-
-
10
-
-
0002714543
-
Making large-scale SVM learning practical
-
Schölkopf B., et al. (Ed), MIT Press, Cambridge, MA
-
Joachims T. Making large-scale SVM learning practical. In: Schölkopf B., et al. (Ed). Advances in Kernel Method-Support Vector Learning (1999), MIT Press, Cambridge, MA
-
(1999)
Advances in Kernel Method-Support Vector Learning
-
-
Joachims, T.1
-
13
-
-
0035506741
-
On the convergence of the decomposition method for support vector machines
-
Lin C.-J. On the convergence of the decomposition method for support vector machines. IEEE Trans. Neural Networks 12 (2001) 1288-1298
-
(2001)
IEEE Trans. Neural Networks
, vol.12
, pp. 1288-1298
-
-
Lin, C.-J.1
-
14
-
-
0036129250
-
Asymptotic convergence of an SMO algorithm without any assumptions
-
Lin C.-J. Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Trans. Neural Networks 13 (2002) 248-250
-
(2002)
IEEE Trans. Neural Networks
, vol.13
, pp. 248-250
-
-
Lin, C.-J.1
-
15
-
-
0042185149
-
An incomplete Cholesky factorization for dense matrices
-
Lin C.-J., and Saigal R. An incomplete Cholesky factorization for dense matrices. BIT 40 (2000) 536-558
-
(2000)
BIT
, vol.40
, pp. 536-558
-
-
Lin, C.-J.1
Saigal, R.2
-
16
-
-
0000042397
-
Bound constrained quadratic programming via piecewise quadratic functions
-
Madsen K., Nielsen H.B., and Pinar M.C. Bound constrained quadratic programming via piecewise quadratic functions. Math. Programm. 85 1 (1999) 135-156
-
(1999)
Math. Programm.
, vol.85
, Issue.1
, pp. 135-156
-
-
Madsen, K.1
Nielsen, H.B.2
Pinar, M.C.3
-
21
-
-
34548670591
-
-
Murphy, P.M., Aha, D.W., 1992. UCI Repository of Machine Learning Databases. .
-
-
-
-
22
-
-
34548673639
-
-
Musicant, D.R., 1998. NDC: Normally Distributed Clustered Datasets. .
-
-
-
-
23
-
-
34548680164
-
-
Musicant, D.R., Managsarian, O.L., 2000. LSVM: Lagrangian Support Vector Machine. .
-
-
-
-
24
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
Schölkopf B. (Ed), MIT Press, Cambridge
-
Platt J.C. Fast training of support vector machines using sequential minimal optimization. In: Schölkopf B. (Ed). Advances in Kernel Method-Support Vector Learning (1999), MIT Press, Cambridge 185-208
-
(1999)
Advances in Kernel Method-Support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
25
-
-
0003203460
-
A survey of some nonsmooth equations and smoothing Newton methods
-
Progress in Optimization. Eberhard A., Glover B., Hill R., and Ralph D. (Eds), Kluwer Academic Publishers, Dordrecht
-
Qi L., and Sun D. A survey of some nonsmooth equations and smoothing Newton methods. In: Eberhard A., Glover B., Hill R., and Ralph D. (Eds). Progress in Optimization. Applied Optimization vol. 30 (1999), Kluwer Academic Publishers, Dordrecht 121-146
-
(1999)
Applied Optimization
, vol.30
, pp. 121-146
-
-
Qi, L.1
Sun, D.2
-
28
-
-
0000919259
-
On piecewise quadratic Newton and trust region problems
-
Sun J. On piecewise quadratic Newton and trust region problems. Math. Programm. 76 (1997) 451-467
-
(1997)
Math. Programm.
, vol.76
, pp. 451-467
-
-
Sun, J.1
-
29
-
-
0032594959
-
An overview of statistical learning theory
-
Vapnik V.N. An overview of statistical learning theory. IEEE Trans. Neural Network 10 (1999) 988-999
-
(1999)
IEEE Trans. Neural Network
, vol.10
, pp. 988-999
-
-
Vapnik, V.N.1
-
31
-
-
34548672866
-
Lower dimension Newton-algorithm for training the support vector machines
-
(in Chinese)
-
Zhou S.-S., and Zhou L.-H. Lower dimension Newton-algorithm for training the support vector machines. Syst. Eng. Electron. 26 (2004) 1315-1318 (in Chinese)
-
(2004)
Syst. Eng. Electron.
, vol.26
, pp. 1315-1318
-
-
Zhou, S.-S.1
Zhou, L.-H.2
-
33
-
-
27944479599
-
A maximum entropy method for training the support vector machines
-
(in Chinese)
-
Zhou S.-S., Rong X.-F., and Zhou L.-H. A maximum entropy method for training the support vector machines. Signal Process. 19 (2003) 595-599 (in Chinese)
-
(2003)
Signal Process.
, vol.19
, pp. 595-599
-
-
Zhou, S.-S.1
Rong, X.-F.2
Zhou, L.-H.3
-
34
-
-
0345330238
-
Experimental study on the performance of support vector machine with squared cost function
-
(in Chinese)
-
Zhu Y.-S., Wang C.-D., and Zhang Y.-Y. Experimental study on the performance of support vector machine with squared cost function. Chinese J. Comput. 26 (2003) 982-989 (in Chinese)
-
(2003)
Chinese J. Comput.
, vol.26
, pp. 982-989
-
-
Zhu, Y.-S.1
Wang, C.-D.2
Zhang, Y.-Y.3
|