메뉴 건너뛰기




Volumn 3100, Issue , 2004, Pages 321-337

Rough sets and relational learning

Author keywords

[No Author keywords available]

Indexed keywords


EID: 34548635648     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-27794-1_15     Document Type: Article
Times cited : (11)

References (50)
  • 5
    • 0000640432 scopus 로고
    • Inductive logic programming
    • Muggleton, S.: Inductive logic programming. New Generation Computing 8 (1991) 295-318
    • (1991) New Generation Computing , vol.8 , pp. 295-318
    • Muggleton, S.1
  • 6
    • 0009720964 scopus 로고    scopus 로고
    • Scientific knowledge discovery through inductive logic programming
    • Muggleton, S.: Scientific knowledge discovery through inductive logic programming. Communications of the ACM 42 (1999) 43-46
    • (1999) Communications of the ACM , vol.42 , pp. 43-46
    • Muggleton, S.1
  • 8
    • 3142718028 scopus 로고    scopus 로고
    • The generic Rough Set Inductive Logic Programming (gRS-ILP) model
    • Lin, T.Y., Yao, Y.Y., Zadeh, L.A., eds.: Physica-Verlag
    • Siromoney, A., Inoue, K.: The generic Rough Set Inductive Logic Programming (gRS-ILP) model. In Lin, T.Y., Yao, Y.Y., Zadeh, L.A., eds.: Data Mining, Rough Sets and Granular Computing. Volume 95., Physica-Verlag (2002) 499-517
    • (2002) Data Mining, Rough Sets and Granular Computing , vol.95 , pp. 499-517
    • Siromoney, A.1    Inoue, K.2
  • 10
  • 14
    • 35048892667 scopus 로고    scopus 로고
    • Learning first-order rules: A rough set approach
    • Stepaniuk, J., Honko, P.: Learning first-order rules: A rough set approach. Fundamenta Informaticae XXI (2003) 1001-1019
    • (2003) Fundamenta Informaticae , vol.21 , pp. 1001-1019
    • Stepaniuk, J.1    Honko, P.2
  • 19
    • 0014797273 scopus 로고
    • A relational model of data for large shared data banks
    • Codd, E.F.: A relational model of data for large shared data banks. Communications of the ACM 13 (1970) 377-387
    • (1970) Communications of the ACM , vol.13 , pp. 377-387
    • Codd, E.F.1
  • 21
    • 85001975364 scopus 로고    scopus 로고
    • Enhancing the exploitation of data mining in relational database systems via the rough sets theory including precision variables
    • Machuca, F., Millán, M.: Enhancing the exploitation of data mining in relational database systems via the rough sets theory including precision variables. In: Proceedings of the 1998 ACM Symposium on Applied Computing. (1998) 70-73
    • (1998) Proceedings of the 1998 ACM Symposium on Applied Computing , pp. 70-73
    • Machuca, F.1    Millán, M.2
  • 22
    • 0000987605 scopus 로고    scopus 로고
    • Analyzing relational databases using rough set based methods
    • Wróblewski, J.: Analyzing relational databases using rough set based methods. In: Proceedings of IPMU 2000. Volume 1. (2000) 256-262
    • (2000) Proceedings of IPMU 2000 , vol.1 , pp. 256-262
    • Wróblewski, J.1
  • 23
    • 84942864832 scopus 로고    scopus 로고
    • A logic programming framework for rough sets
    • Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N., eds.: Rough Sets and Current Trends in Computing - Third International Conference, RSCTC 2002 Pennsylvania, USA, Springer
    • Vitoria, A., Maluszynski, J.: A logic programming framework for rough sets. In Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N., eds.: Rough Sets and Current Trends in Computing - Third International Conference, RSCTC 2002. Lecture Notes in Artificial Intelligence 2475, Pennsylvania, USA, Springer (2002) 205-212
    • (2002) Lecture Notes in Artificial Intelligence , vol.2475 , pp. 205-212
    • Vitoria, A.1    Maluszynski, J.2
  • 25
    • 0030219290 scopus 로고    scopus 로고
    • First order rough logic I: Approximate reasoning via rough sets
    • Lin, T., Liu, Q.: First order rough logic I: Approximate reasoning via rough sets. Fundamenta Informaticae 27 (1996) 137-153
    • (1996) Fundamenta Informaticae , vol.27 , pp. 137-153
    • Lin, T.1    Liu, Q.2
  • 27
    • 12944259480 scopus 로고
    • A first-order logic for reasoning under uncertainty using rough sets
    • Parsons, S., Kubat, M.: A first-order logic for reasoning under uncertainty using rough sets. Journal of Intelligent Manufacturing 5 (1994) 211-223
    • (1994) Journal of Intelligent Manufacturing , vol.5 , pp. 211-223
    • Parsons, S.1    Kubat, M.2
  • 28
    • 35048888715 scopus 로고    scopus 로고
    • Rough rules in Prolog
    • Polkowski, L., Skowron, A., eds.: Rough Sets and Current Trends in Computing -First International Conference, RSCTC 1998 Warsaw, Poland, Springer
    • Mrózek, A., Skabek, K.: Rough rules in Prolog. In Polkowski, L., Skowron, A., eds.: Rough Sets and Current Trends in Computing -First International Conference, RSCTC 1998. Lecture Notes in Artificial Intelligence 1424, Warsaw, Poland, Springer (1998) 458-466
    • (1998) Lecture Notes in Artificial Intelligence , vol.1424 , pp. 458-466
    • Mrózek, A.1    Skabek, K.2
  • 30
    • 35048865553 scopus 로고
    • An expert system for conceptual schema design: A machine learning approach
    • Yasdi, R., Ziarko, W.: An expert system for conceptual schema design: a machine learning approach. Machine Learning and Uncertain Reasoning 3 (1987)
    • (1987) Machine Learning and Uncertain Reasoning , vol.3
    • Yasdi, R.1    Ziarko, W.2
  • 31
    • 35048854807 scopus 로고
    • The arguments of newly invented predicates in ILP
    • Wrobel, S., ed.: Proceedings of the 4th International Workshop on Inductive Logic Programming - ILP94. Gesellschaft für Mathematik und Datenverarbeitung MBH
    • Stahl, I., Weber, I.: The arguments of newly invented predicates in ILP. In Wrobel, S., ed.: Proceedings of the 4th International Workshop on Inductive Logic Programming - ILP94. Volume 237 of GMD-Studien., Gesellschaft für Mathematik und Datenverarbeitung MBH (1994) 233-246
    • (1994) GMD-Studien , vol.237 , pp. 233-246
    • Stahl, I.1    Weber, I.2
  • 32
    • 84957925858 scopus 로고
    • The efficiency of bias shift operations in ILP
    • Raedt, L.D., ed.: ILP95, Dept. of Computer Science, K.U.Leuven, Belgium
    • Stahl, I.: The efficiency of bias shift operations in ILP. In Raedt, L.D., ed.: Proceedings of the 5th International Workshop on Inductive Logic Programming - ILP95, Dept. of Computer Science, K.U.Leuven, Belgium (1995) 231-246
    • (1995) Proceedings of the 5th International Workshop on Inductive Logic Programming , pp. 231-246
    • Stahl, I.1
  • 33
    • 84947807222 scopus 로고    scopus 로고
    • Learning logical descriptions for document understanding: A Rough Sets-based approach
    • Polkowski, L., Skowron, A., eds.: Rough Sets and Current Trends in Computing - First International Conference, RSCTC 1998. Warsaw, Poland, Springer
    • Martienne, E., Quafafou, M.: Learning logical descriptions for document understanding: A Rough Sets-based approach. In Polkowski, L., Skowron, A., eds.: Rough Sets and Current Trends in Computing - First International Conference, RSCTC 1998. Lecture Notes in Artificial Intelligence 1424, Warsaw, Poland, Springer (1998) 202-209
    • (1998) Lecture Notes in Artificial Intelligence , vol.1424 , pp. 202-209
    • Martienne, E.1    Quafafou, M.2
  • 34
    • 0034157015 scopus 로고    scopus 로고
    • Elementary sets and declarative biases in a restricted gRS-ILP model
    • Siromoney, A., Inoue, K.: Elementary sets and declarative biases in a restricted gRS-ILP model. Informatica 24 (2000) 125-135
    • (2000) Informatica , vol.24 , pp. 125-135
    • Siromoney, A.1    Inoue, K.2
  • 35
    • 84958058821 scopus 로고    scopus 로고
    • Rough problem settings for Inductive Logic Programming
    • N.Zhong, ad S.Ohsuga, A., eds.: New Directions in Rough Sets, Data Mining, and Granular-Soft Computing - 7th International Workshop, RSFDGrC'99. Yamaguchi, Japan, Springer
    • Liu, C., Zhong, N.: Rough problem settings for Inductive Logic Programming. In N.Zhong, ad S.Ohsuga, A., eds.: New Directions in Rough Sets, Data Mining, and Granular-Soft Computing - 7th International Workshop, RSFDGrC'99. Lecture Notes in Artificial Intelligence 1711, Yamaguchi, Japan, Springer (1999) 168-177
    • (1999) Lecture Notes in Artificial Intelligence , vol.1711 , pp. 168-177
    • Liu, C.1    Zhong, N.2
  • 36
    • 0035415142 scopus 로고    scopus 로고
    • Rough problem settings for ILP dealing with imperfect data
    • Liu, C., Zhong, N.: Rough problem settings for ILP dealing with imperfect data. Computational Intelligence 17 (2001) 446-459
    • (2001) Computational Intelligence , vol.17 , pp. 446-459
    • Liu, C.1    Zhong, N.2
  • 37
    • 84957804690 scopus 로고    scopus 로고
    • A Rough Set approach to Inductive Logic Programming
    • Ziarko, W., Yao, Y., eds.: Rough Sets and Current Trends in Computing - Second International Conference, RSCTC 2000. Banff, Canada, Springer
    • Midelfart, H., Komorowski, J.: A Rough Set approach to Inductive Logic Programming. In Ziarko, W., Yao, Y., eds.: Rough Sets and Current Trends in Computing - Second International Conference, RSCTC 2000. Lecture Notes in Artificial Intelligence 2005, Banff, Canada, Springer (2000) 190-198
    • (2000) Lecture Notes in Artificial Intelligence , vol.2005 , pp. 190-198
    • Midelfart, H.1    Komorowski, J.2
  • 38
    • 35048883641 scopus 로고    scopus 로고
    • Rough sets and relational learning
    • Zimmermann, H.J., ed.
    • Stepaniuk, J.: Rough sets and relational learning. In Zimmermann, H.J., ed.: Proceedings of EUFIT. (1999)
    • (1999) Proceedings of EUFIT
    • Stepaniuk, J.1
  • 40
    • 0004109056 scopus 로고
    • Muggleton, S., ed.: Academic Press
    • Muggleton, S., ed.: Inductive Logic Programming. Academic Press (1992)
    • (1992) Inductive Logic Programming
  • 43
    • 0028429573 scopus 로고
    • Inductive logic programming: Theory and methods
    • Muggleton, S., Raedt, L.D.: Inductive logic programming: Theory and methods. Journal of Logic Programming 19 (1994) 629-679
    • (1994) Journal of Logic Programming , vol.19 , pp. 629-679
    • Muggleton, S.1    Raedt, L.D.2
  • 44
    • 18344406127 scopus 로고    scopus 로고
    • Applying knowledge discovery to predict water-supply consumption
    • An, A., Chan, C., Shan, N., cereone, N., Ziarko, W.: Applying knowledge discovery to predict water-supply consumption. IEEE Expert 12 (1997) 72-78
    • (1997) IEEE Expert , vol.12 , pp. 72-78
    • An, A.1    Chan, C.2    Shan, N.3    Cereone, N.4    Ziarko, W.5
  • 45
    • 84974663980 scopus 로고    scopus 로고
    • The Variable Precision Rough Set Inductive Logic Programming model and web usage graphs
    • New Frontiers in Artificial Intelligence - Joint JSAI 2001 Workshop Post-Proceedings. Springer
    • Uma Maheswari, V., Siromoney, A., Mehata, K.M.: The Variable Precision Rough Set Inductive Logic Programming model and web usage graphs. In: New Frontiers in Artificial Intelligence - Joint JSAI 2001 Workshop Post-Proceedings. Volume 2253., Lecture Notes in Computer Science, Springer (2001) 339-343
    • (2001) Lecture Notes in Computer Science , vol.2253 , pp. 339-343
    • Uma Maheswari, V.1    Siromoney, A.2    Mehata, K.M.3
  • 46
    • 35048825512 scopus 로고    scopus 로고
    • The Variable Precision Rough Set Inductive Logic Programming model and future test cases in web usage mining
    • Inuiguchi, M., Tsumoto, S., Hirano, S., eds.: Physica-Verlag
    • Uma Maheswari, V., Siromoney, A., Mehata, K.M.: The Variable Precision Rough Set Inductive Logic Programming model and future test cases in web usage mining. In Inuiguchi, M., Tsumoto, S., Hirano, S., eds.: Rough Set Theory and Granular Computing, Physica-Verlag (2003)
    • (2003) Rough Set Theory and Granular Computing
    • Uma Maheswari, V.1    Siromoney, A.2    Mehata, K.M.3
  • 48
    • 77951503082 scopus 로고
    • Inverse entailment and Progol
    • Muggleton, S.: Inverse entailment and Progol. New Generation Computing 13 (1995) 245-286
    • (1995) New Generation Computing , vol.13 , pp. 245-286
    • Muggleton, S.1
  • 50
    • 84957891317 scopus 로고    scopus 로고
    • Carcinogenesis predictions using ILP
    • Lavrač, N., Džeroski, S., eds.: Proceedings of the Seventh International Workshop on Inductive Logic Programming. Springer-Verlag, Berlin
    • Srinivasan, A., King, R., Muggleton, S., Sternberg, M.: Carcinogenesis predictions using ILP. In Lavrač, N., Džeroski, S., eds.: Proceedings of the Seventh International Workshop on Inductive Logic Programming. Springer-Verlag, Berlin (1997) 273-287 LNAI 1297.
    • (1997) LNAI , vol.1297 , pp. 273-287
    • Srinivasan, A.1    King, R.2    Muggleton, S.3    Sternberg, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.