-
2
-
-
0033886806
-
Text classification from labeled and unlabeled documents using EM
-
Nigam K, McCallum A K, Thrun S, Mitchell T. Text classification from labeled and unlabeled documents using EM. Machine Learning, 2000, 39(2-3): 103-134.
-
(2000)
Machine Learning
, vol.39
, Issue.2-3
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.K.2
Thrun, S.3
Mitchell, T.4
-
3
-
-
0442312143
-
A mixture model and EM-based algorithm for class discovery, robust classification, and outlier rejection in mixed labeled/unlabeled data sets
-
Miller D J, Browning J. A mixture model and EM-based algorithm for class discovery, robust classification, and outlier rejection in mixed labeled/unlabeled data sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(11): 1468-1483.
-
(2003)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.25
, Issue.11
, pp. 1468-1483
-
-
Miller, D.J.1
Browning, J.2
-
5
-
-
31844434758
-
Semi-supervised learning using randomized mincuts
-
Texas, USA
-
Blum A, Lafferty J, Rwebangira M, Reddy R. Semi-supervised learning using randomized mincuts//Proceedings of the 21st International Conference on Machine Learning. Texas, USA, 2004: 934-947.
-
(2004)
Proceedings of the 21st International Conference on Machine Learning
, pp. 934-947
-
-
Blum, A.1
Lafferty, J.2
Rwebangira, M.3
Reddy, R.4
-
6
-
-
33745456231
-
Semi-supervised learning literature survey
-
University of Wisconsin, Wisconsin: Technical Report: TR1530
-
Zhu X J. Semi-supervised learning literature survey. University of Wisconsin, Wisconsin: Technical Report: TR1530, 2006.
-
(2006)
-
-
Zhu, X.J.1
-
9
-
-
28244448186
-
Tri-training: Exploiting unlabeled data using three classifiers
-
Zhou Z H, Li M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11): 1529-1541.
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.11
, pp. 1529-1541
-
-
Zhou, Z.H.1
Li, M.2
-
12
-
-
26844464912
-
Corrected co-training for statistical parsers
-
Washington, DC
-
Hwa R, Osborne M, Sarkar A, Steedman M. Corrected co-training for statistical parsers//Proceedings of the ICML03 Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining. Washington, DC, 2003: 95-102.
-
(2003)
Proceedings of the ICML03 Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining
, pp. 95-102
-
-
Hwa, R.1
Osborne, M.2
Sarkar, A.3
Steedman, M.4
-
15
-
-
0347762679
-
Identifying and handling mislabeled instances
-
Muhlenbach F, Lallich S, Zighed D A. Identifying and handling mislabeled instances. Journal of Intelligent Information Systems, 2004, 22(1): 89-109.
-
(2004)
Journal of Intelligent Information Systems
, vol.22
, Issue.1
, pp. 89-109
-
-
Muhlenbach, F.1
Lallich, S.2
Zighed, D.A.3
-
18
-
-
0347895067
-
Analysis of new techniques to obtain quality training sets
-
Sanchez J S, Barandela R, Marques A I, Alejo R, Badenas J. Analysis of new techniques to obtain quality training sets. Pattern Recognition Letters, 2003, 24(7): 1015-1022.
-
(2003)
Pattern Recognition Letters
, vol.24
, Issue.7
, pp. 1015-1022
-
-
Sanchez, J.S.1
Barandela, R.2
Marques, A.I.3
Alejo, R.4
Badenas, J.5
-
19
-
-
0000492326
-
Learning from noisy examples
-
Angluin D, Laird P. Learning from noisy examples. Machine Learning, 1988, 2(4): 343-370.
-
(1988)
Machine Learning
, vol.2
, Issue.4
, pp. 343-370
-
-
Angluin, D.1
Laird, P.2
-
20
-
-
33745834241
-
UCI repository of machine learning databases
-
Blake C, Keogh E, Merz C J. UCI repository of machine learning databases. http://www.ics.uci.edu/-mlearn/MLRepository.html.
-
-
-
Blake, C.1
Keogh, E.2
Merz, C.J.3
|