메뉴 건너뛰기




Volumn 8, Issue 1, 2008, Pages 543-554

Fuzzy ARTMAP dynamic decay adjustment: An improved fuzzy ARTMAP model with a conflict resolving facility

Author keywords

Adaptive resonance theory; Classification; Dynamic decay adjustment; Fuzzy ARTMAP

Indexed keywords

ADAPTIVE SYSTEMS; LEARNING SYSTEMS; POWER GENERATION; RESONANCE; SOFTWARE PROTOTYPING;

EID: 34548487767     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2007.03.006     Document Type: Article
Times cited : (16)

References (63)
  • 3
    • 0040951743 scopus 로고
    • Local properties of k-nearest neighbor regression estimates
    • Mack Y.P. Local properties of k-nearest neighbor regression estimates. SIAM J. Algeb. Discr. Methods 2 (1981) 311-323
    • (1981) SIAM J. Algeb. Discr. Methods , vol.2 , pp. 311-323
    • Mack, Y.P.1
  • 4
    • 0003555184 scopus 로고
    • Dasarathy B.V. (Ed), IEEE Comp. Soc. Press, Los Alamitos, CA
    • In: Dasarathy B.V. (Ed). Nearest Neighbor Pattern Classification Techniques (1991), IEEE Comp. Soc. Press, Los Alamitos, CA
    • (1991) Nearest Neighbor Pattern Classification Techniques
  • 5
    • 0001077903 scopus 로고
    • An approximation to the density function
    • Akaike H. An approximation to the density function. Ann. Inst. Statist. Math. 6 (1954) 127-132
    • (1954) Ann. Inst. Statist. Math. , vol.6 , pp. 127-132
    • Akaike, H.1
  • 6
    • 0001473437 scopus 로고
    • On the estimation of a probability density function and the mode
    • Parzen E. On the estimation of a probability density function and the mode. Ann. Math. Statist. 33 (1962) 1065-1076
    • (1962) Ann. Math. Statist. , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 7
    • 0001529784 scopus 로고
    • Remarks on some nonparametric estimates of a density function
    • Rosenblatt M. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27 (1956) 832-837
    • (1956) Ann. Math. Statist. , vol.27 , pp. 832-837
    • Rosenblatt, M.1
  • 8
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Mach. Learn. 1 (1986) 81-106
    • (1986) Mach. Learn. , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 12
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody M.J., and Darken C.J. Fast learning in networks of locally-tuned processing units. Neural Comput. 1 (1989) 281-294
    • (1989) Neural Comput. , vol.1 , pp. 281-294
    • Moody, M.J.1    Darken, C.J.2
  • 14
    • 0023513717 scopus 로고
    • Learning, invariances, and generalization in high-order neural networks
    • Giles G.L., and Maxwell T. Learning, invariances, and generalization in high-order neural networks. Appl. Opt. 26 (1987) 4972-4978
    • (1987) Appl. Opt. , vol.26 , pp. 4972-4978
    • Giles, G.L.1    Maxwell, T.2
  • 15
    • 0021776661 scopus 로고
    • A massively parallel architecture for a self-organizing neural pattern recognition machine
    • Carpenter G.A., and Grossberg S. A massively parallel architecture for a self-organizing neural pattern recognition machine. Comput. Vision Graph. Image Process. 37 (1987) 54-115
    • (1987) Comput. Vision Graph. Image Process. , vol.37 , pp. 54-115
    • Carpenter, G.A.1    Grossberg, S.2
  • 16
    • 84973857317 scopus 로고
    • Stable self-organisation of pattern recognition codes for analog input patterns
    • Carpenter G.A., and Grossberg S. Stable self-organisation of pattern recognition codes for analog input patterns. Appl. Opt. 26 (1987) 4919-4930
    • (1987) Appl. Opt. , vol.26 , pp. 4919-4930
    • Carpenter, G.A.1    Grossberg, S.2
  • 17
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht D.F. Probabilistic neural networks. Neural Networks 3 (1990) 109-118
    • (1990) Neural Networks , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 18
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Rumelhalt D.E., and McCleland J.L. (Eds), MIT Press, Cambridge, MA
    • Rumelhalt D.E., Hinton G.E., and Williams R.J. Learning internal representations by error propagation. In: Rumelhalt D.E., and McCleland J.L. (Eds). Parallel Distributed Processing vol. 1 (1986), MIT Press, Cambridge, MA 318-362
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhalt, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 19
    • 1342286914 scopus 로고    scopus 로고
    • Induction machine fault detection using som-based rbf neural networks
    • Wu S., and Chow T.W.S. Induction machine fault detection using som-based rbf neural networks. IEEE Trans. Ind. Electronics 51 (2004) 183-194
    • (2004) IEEE Trans. Ind. Electronics , vol.51 , pp. 183-194
    • Wu, S.1    Chow, T.W.S.2
  • 20
    • 10844269472 scopus 로고    scopus 로고
    • Electric load forecasting using a fuzzy ART&ARTMAP neural network
    • Lopes M.L.M., Minussi C.R., and Lotufo A.D.P. Electric load forecasting using a fuzzy ART&ARTMAP neural network. Appl. Soft Comput. 5 (2005) 235-244
    • (2005) Appl. Soft Comput. , vol.5 , pp. 235-244
    • Lopes, M.L.M.1    Minussi, C.R.2    Lotufo, A.D.P.3
  • 21
  • 22
    • 33750943823 scopus 로고    scopus 로고
    • Neural network classification of homomorphic segmented heart sounds
    • Gupta C.N., Swaminathan R.P., and Krishnan S.M. Neural network classification of homomorphic segmented heart sounds. Appl. Soft Comput. 7 (2007) 286-297
    • (2007) Appl. Soft Comput. , vol.7 , pp. 286-297
    • Gupta, C.N.1    Swaminathan, R.P.2    Krishnan, S.M.3
  • 23
    • 0023981451 scopus 로고
    • The art of adaptive pattern recognition by a self-organizing neural network
    • Carpenter G.A., and Grossberg S. The art of adaptive pattern recognition by a self-organizing neural network. Computer 21 (1988) 77-88
    • (1988) Computer , vol.21 , pp. 77-88
    • Carpenter, G.A.1    Grossberg, S.2
  • 24
    • 0025889915 scopus 로고
    • ARTMAP: supervised real-learning and classification of nonstationary data by a self-organizing neural network
    • Carpenter G.A., Grossberg S., and Reynolds J. ARTMAP: supervised real-learning and classification of nonstationary data by a self-organizing neural network. Neural Networks 4 (1991) 565-588
    • (1991) Neural Networks , vol.4 , pp. 565-588
    • Carpenter, G.A.1    Grossberg, S.2    Reynolds, J.3
  • 25
    • 0026408256 scopus 로고
    • Fuzzy art: fast stable learning and categorization of analog patterns by an adaptive resonance system
    • Carpenter G.A., Grossberg S., and Rosen D. Fuzzy art: fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks 4 (1991) 759-771
    • (1991) Neural Networks , vol.4 , pp. 759-771
    • Carpenter, G.A.1    Grossberg, S.2    Rosen, D.3
  • 26
    • 0026923589 scopus 로고
    • Fuzzy artmap: a neural network architecture for incremental learning of analog multidimensional maps
    • Carpenter G.A., Grossberg S., Markuzon N., Reynolds J., and Rosen D. Fuzzy artmap: a neural network architecture for incremental learning of analog multidimensional maps. IEEE Trans. Neural Networks 3 (1992) 698-713
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 698-713
    • Carpenter, G.A.1    Grossberg, S.2    Markuzon, N.3    Reynolds, J.4    Rosen, D.5
  • 27
    • 0029341754 scopus 로고
    • ART-EMAP: a neural network architecture for object recognition by evidence accumulation
    • Carpenter G.A., and Ross W. ART-EMAP: a neural network architecture for object recognition by evidence accumulation. IEEE Trans. Neural Networks 6 (1995) 805-818
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 805-818
    • Carpenter, G.A.1    Ross, W.2
  • 28
    • 0031277463 scopus 로고    scopus 로고
    • Distributed learning, recognition, and prediction by art and artmap neural networks
    • Carpenter G.A. Distributed learning, recognition, and prediction by art and artmap neural networks. Neural Networks 10 (1997) 1473-1494
    • (1997) Neural Networks , vol.10 , pp. 1473-1494
    • Carpenter, G.A.1
  • 30
    • 2942629149 scopus 로고    scopus 로고
    • Application of an adaptive neural network with symbolic rule extraction to fault detection and diagnosis in a power generation plant
    • Tan S.C., and Lim C.P. Application of an adaptive neural network with symbolic rule extraction to fault detection and diagnosis in a power generation plant. IEEE Trans. Energy Convers. 19 (2004) 369-377
    • (2004) IEEE Trans. Energy Convers. , vol.19 , pp. 369-377
    • Tan, S.C.1    Lim, C.P.2
  • 31
    • 0026927202 scopus 로고
    • Fuzzy min-max neural networks. I. Classification
    • Simpson P.K. Fuzzy min-max neural networks. I. Classification. IEEE Trans. Neural Networks 3 (1992) 776-786
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 776-786
    • Simpson, P.K.1
  • 32
    • 0034187078 scopus 로고    scopus 로고
    • General fuzzy min-max neural network for clustering and classification
    • Gabrys B., and Bargiela A. General fuzzy min-max neural network for clustering and classification. IEEE Trans. Neural Networks 11 (2000) 769-783
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 769-783
    • Gabrys, B.1    Bargiela, A.2
  • 34
    • 0344835882 scopus 로고    scopus 로고
    • Constructive training of probabilistic neural networks
    • Berthold M.R., and Diamond J. Constructive training of probabilistic neural networks. Neurocomputing 19 (1998) 167-183
    • (1998) Neurocomputing , vol.19 , pp. 167-183
    • Berthold, M.R.1    Diamond, J.2
  • 35
  • 36
    • 0031194555 scopus 로고    scopus 로고
    • An incremental adaptive network for on-line supervised learning and probability estimation
    • Lim C.P., and Harrison R.F. An incremental adaptive network for on-line supervised learning and probability estimation. Neural Networks 10 (1997) 925-939
    • (1997) Neural Networks , vol.10 , pp. 925-939
    • Lim, C.P.1    Harrison, R.F.2
  • 37
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problem
    • Fisher R.A. The use of multiple measurements in taxonomic problem. Ann. Eugenics 7 (1936) 179-188
    • (1936) Ann. Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 38
    • 0002039637 scopus 로고
    • Cancer diagnosis via linear programming
    • Mangasarian O.L., and Wolberg W.H. Cancer diagnosis via linear programming. SIAM News 23 (1990) 1-18
    • (1990) SIAM News , vol.23 , pp. 1-18
    • Mangasarian, O.L.1    Wolberg, W.H.2
  • 39
    • 34548498215 scopus 로고    scopus 로고
    • S. Hettich, C.L. Blake, C.J. Merz, UCI repository of machine learning databases, 1998. [http://www.ics.uci.edu/∼mlearn/MLRepository.html], University of California, Department of Information and Computer Science, Irvine, CA.
  • 41
    • 0002344794 scopus 로고
    • Bootstrap methods: another look at the jackknife
    • Efron B. Bootstrap methods: another look at the jackknife. Ann. Statist. 7 (1979) 1-26
    • (1979) Ann. Statist. , vol.7 , pp. 1-26
    • Efron, B.1
  • 42
    • 1342324574 scopus 로고    scopus 로고
    • A compact and accurate model for classification
    • Last M., and Maimon O. A compact and accurate model for classification. IEEE Trans. Knowl. Data Eng. 16 (2004) 203-215
    • (2004) IEEE Trans. Knowl. Data Eng. , vol.16 , pp. 203-215
    • Last, M.1    Maimon, O.2
  • 43
    • 0742324888 scopus 로고    scopus 로고
    • An empirical risk functional to improve learning in a neuro-fuzzy classifier
    • Castellano G., Fanelli A.M., and Mencar C. An empirical risk functional to improve learning in a neuro-fuzzy classifier. IEEE Trans. Syst. Man Cybern. 34 (2004) 725-731
    • (2004) IEEE Trans. Syst. Man Cybern. , vol.34 , pp. 725-731
    • Castellano, G.1    Fanelli, A.M.2    Mencar, C.3
  • 46
    • 0141509929 scopus 로고    scopus 로고
    • Supervised learning by means of accuracy-aware evolutionary algorithms
    • Riquelme J.C., Aguilar-Ruiz J.S., and Valle C.D. Supervised learning by means of accuracy-aware evolutionary algorithms. Informat. Sci. 156 (2003) 173-188
    • (2003) Informat. Sci. , vol.156 , pp. 173-188
    • Riquelme, J.C.1    Aguilar-Ruiz, J.S.2    Valle, C.D.3
  • 48
    • 0000182788 scopus 로고    scopus 로고
    • Processing individual fuzzy attributes for fuzzy rule induction
    • Hong T.P., and Chen J.-B. Processing individual fuzzy attributes for fuzzy rule induction. Fuzzy Set Syst. 112 (2000) 127-140
    • (2000) Fuzzy Set Syst. , vol.112 , pp. 127-140
    • Hong, T.P.1    Chen, J.-B.2
  • 49
    • 4243149406 scopus 로고    scopus 로고
    • Building multi-way decision trees with numerical attributes
    • Berzal F., Cubero J.-C., and Marín N. Building multi-way decision trees with numerical attributes. Informat. Sci. 165 (2004) 73-90
    • (2004) Informat. Sci. , vol.165 , pp. 73-90
    • Berzal, F.1    Cubero, J.-C.2    Marín, N.3
  • 51
    • 34548479356 scopus 로고    scopus 로고
    • http://www.phys.uni.torun.pl/kmk/projects/datasets.html.
  • 52
    • 1842787628 scopus 로고    scopus 로고
    • A vector quantization method for nearest neighbor classifier design
    • Yen C.-W., Young C.-N., and Nagurka M.-L. A vector quantization method for nearest neighbor classifier design. Pattern Recogn. Lett. 25 (2004) 725-731
    • (2004) Pattern Recogn. Lett. , vol.25 , pp. 725-731
    • Yen, C.-W.1    Young, C.-N.2    Nagurka, M.-L.3
  • 53
    • 0002814440 scopus 로고    scopus 로고
    • Neural networks in medical diagnosis: comparison with other methods
    • Bulsari A., et al. (Ed)
    • Ster B., Dobnikal A., et al. Neural networks in medical diagnosis: comparison with other methods. In: Bulsari A., et al. (Ed). Proceedings of the International Conference EANN'96 (1996) 427-430
    • (1996) Proceedings of the International Conference EANN'96 , pp. 427-430
    • Ster, B.1    Dobnikal, A.2
  • 54
    • 1842815760 scopus 로고    scopus 로고
    • Latent variable discovery in classification models
    • Zhang N.L., Nielsen T.D., and Jensen F.V. Latent variable discovery in classification models. Artif. Intell. Med. 30 (2004) 283-299
    • (2004) Artif. Intell. Med. , vol.30 , pp. 283-299
    • Zhang, N.L.1    Nielsen, T.D.2    Jensen, F.V.3
  • 55
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • Nauck D., and Kruse R. Obtaining interpretable fuzzy classification rules from medical data. Artif. Intell. Med. 16 (1999) 149-169
    • (1999) Artif. Intell. Med. , vol.16 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 58
    • 21844488118 scopus 로고
    • Rule extraction: from neural architecture to symbolic representation
    • Carpenter G.A., and Tan A.H. Rule extraction: from neural architecture to symbolic representation. Connect. Sci. 7 (1995) 3-27
    • (1995) Connect. Sci. , vol.7 , pp. 3-27
    • Carpenter, G.A.1    Tan, A.H.2
  • 59
    • 34548494213 scopus 로고    scopus 로고
    • TNB Malaysia, System Description and Operating Procedures, Prai Power Station Stage 3, vol. 14, 1999.
  • 61
    • 0036684204 scopus 로고    scopus 로고
    • Discovering useful concept prototypes for classification based on filtering and abstraction
    • Lam W., Keung C.-K., and Liu D. Discovering useful concept prototypes for classification based on filtering and abstraction. IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002) 1075-1090
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , pp. 1075-1090
    • Lam, W.1    Keung, C.-K.2    Liu, D.3
  • 62
    • 24344455644 scopus 로고    scopus 로고
    • Sensitivity analysis applied to the construction of radial basis function networks
    • Shi D., Yeung D.S., and Gao J. Sensitivity analysis applied to the construction of radial basis function networks. Neural Networks 18 (2005) 951-957
    • (2005) Neural Networks , vol.18 , pp. 951-957
    • Shi, D.1    Yeung, D.S.2    Gao, J.3
  • 63
    • 34548482955 scopus 로고    scopus 로고
    • Fast constructive-covering algorithm for neural networks and its implement in classification
    • Wang D. Fast constructive-covering algorithm for neural networks and its implement in classification. Appl. Soft Comput. J. 8 (2007) 166-173
    • (2007) Appl. Soft Comput. J. , vol.8 , pp. 166-173
    • Wang, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.