-
2
-
-
0036135396
-
-
(a) Steen, E.; Wondimagegn, T.; Ghosh, A. J. Inorg. Biochem. 2002, 88, 113-118.
-
(2002)
J. Inorg. Biochem
, vol.88
, pp. 113-118
-
-
Steen, E.1
Wondimagegn, T.2
Ghosh, A.3
-
3
-
-
25444501801
-
-
(b) Zhang, R.; Harischandra, N.; Newcomb, M. Chem. - Eur. J. 2005, 11, 5713-5720.
-
(2005)
Chem. - Eur. J
, vol.11
, pp. 5713-5720
-
-
Zhang, R.1
Harischandra, N.2
Newcomb, M.3
-
4
-
-
0001226248
-
-
(c) Golubkov, G.; Bendix, J.; Gray, H. B.; Mahammed, A.; Goldberg, I.; DiBilio, A. J.; Gross, Z. Angew. Chem., Int. Ed. 2001, 40, 2132-2134.
-
(2001)
Angew. Chem., Int. Ed
, vol.40
, pp. 2132-2134
-
-
Golubkov, G.1
Bendix, J.2
Gray, H.B.3
Mahammed, A.4
Goldberg, I.5
DiBilio, A.J.6
Gross, Z.7
-
5
-
-
0035936215
-
-
(d) Steen, E.; Wondimagegn, T.; Ghosh, A. J. Phys. Chem. B 2001, 105, 11406-11413.
-
(2001)
J. Phys. Chem. B
, vol.105
, pp. 11406-11413
-
-
Steen, E.1
Wondimagegn, T.2
Ghosh, A.3
-
7
-
-
0000208924
-
-
(f) Gross, Z.; Golubkov, G.; Simkhovich, L. Angew. Chem. 2000, 112, 4211-4213.
-
(2000)
Angew. Chem
, vol.112
, pp. 4211-4213
-
-
Gross, Z.1
Golubkov, G.2
Simkhovich, L.3
-
8
-
-
0035825682
-
-
(a) Zouni, A.; Witt, H. T.; Kern, J.; Fromme, P.; Krauss, N.; Saenger, W. Orth, P. Nature 2001, 409, 739-743.
-
(2001)
Nature
, vol.409
, pp. 739-743
-
-
Zouni, A.1
Witt, H.T.2
Kern, J.3
Fromme, P.4
Krauss, N.5
Saenger, W.6
Orth, P.7
-
9
-
-
1642331709
-
-
(b) Ferreira, K. N.; Iverson, T. M.; Mhaghlaoui, K.; Barber, J.; Iwata, S. Science 2004, 303, 1831.
-
(2004)
Science
, vol.303
, pp. 1831
-
-
Ferreira, K.N.1
Iverson, T.M.2
Mhaghlaoui, K.3
Barber, J.4
Iwata, S.5
-
10
-
-
30744445692
-
-
(c) Loll, B.; Kern, J.; Saenger, W.; Zouni, A.; Biesiadka, J. Nature 2005, 438, 1040.
-
(2005)
Nature
, vol.438
, pp. 1040
-
-
Loll, B.1
Kern, J.2
Saenger, W.3
Zouni, A.4
Biesiadka, J.5
-
11
-
-
33750696356
-
-
Yano, J.; Kern, J.; Sauer, K.; Latimer, M. J.; Pushkar, Y.; Biesiadka, J.; Loll, B.; Saenger, W.; Messinger, J.; Zouni, A.; Yachandra, V. K. Science 2006, 314, 821-825.
-
(2006)
Science
, vol.314
, pp. 821-825
-
-
Yano, J.1
Kern, J.2
Sauer, K.3
Latimer, M.J.4
Pushkar, Y.5
Biesiadka, J.6
Loll, B.7
Saenger, W.8
Messinger, J.9
Zouni, A.10
Yachandra, V.K.11
-
12
-
-
27744509042
-
-
(a) Haumann, M.; Liebisch, P.; Muller, C.; Barra, M.; Grabolle, M.; Dau, H. Science 2005, 310, 1019.
-
(2005)
Science
, vol.310
, pp. 1019
-
-
Haumann, M.1
Liebisch, P.2
Muller, C.3
Barra, M.4
Grabolle, M.5
Dau, H.6
-
16
-
-
33846352434
-
-
Gao, Y.; Liu, J.; Wang, M.; Na, Y.; Åkermark, B.; Sun, L. Tetrahedron 2007, 63, 1987-1994.
-
(2007)
Tetrahedron
, vol.63
, pp. 1987-1994
-
-
Gao, Y.1
Liu, J.2
Wang, M.3
Na, Y.4
Åkermark, B.5
Sun, L.6
-
18
-
-
1542378733
-
-
(b) Noodleman, L.; Lovell, T.; Han, W.-G.; Li, J.; Himo, F. Chem. Rev. 2004, 104, 459.
-
(2004)
Chem. Rev
, vol.104
, pp. 459
-
-
Noodleman, L.1
Lovell, T.2
Han, W.-G.3
Li, J.4
Himo, F.5
-
24
-
-
0035914644
-
-
de Visser, S. P.; Ogliaro, F.; Gross, Z.; Shaik, S. Chem. - Eur. J. 2001, 22, 4954-4960.
-
(2001)
Chem. - Eur. J
, vol.22
, pp. 4954-4960
-
-
de Visser, S.P.1
Ogliaro, F.2
Gross, Z.3
Shaik, S.4
-
25
-
-
34548243074
-
-
As explained in ref 9, there are a few formalisms, which enable rationalization of the d-block occupancy. We prefer the formalism where the oxidation state and the charge of the ligand is determined by the number of electrons it takes from the metal center to complete its valence shell. That means that water has an oxidation state of 0, the corrole ligand is 3, and the oxo ligand is 2, while the oxyl ligand is 1, For neutral Mn-corrole complexes, Mn atoms appear in the Mn III state and corrole groups appear in the3- state. For an isolated neutral MnO-oxo-corrole complex, Mn may appear as MnIV, and the corrole then must appear as a cation radical, or Mn appears as Mn V and the corrole has a closed shell. An alternative is to include radical oxyl states. With additional ligands coordinated to MnO-corrole, the distinction between the oxo and oxyl ligands is important and it is done based on Mullike
-
- oxyl ligand (see Table S1, Supporting Information).
-
-
-
-
26
-
-
0037305747
-
-
In some cases, B3LYP is known to stabilize high-spin states over low-spin states; see, for example: Ghosh, A.; Taylor, P. R. Curr. Opin. Chem. Biol. 2003, 7, 113-124, due to the effect of the HF exchange term.
-
In some cases, B3LYP is known to stabilize high-spin states over low-spin states; see, for example: Ghosh, A.; Taylor, P. R. Curr. Opin. Chem. Biol. 2003, 7, 113-124, due to the effect of the HF exchange term.
-
-
-
-
27
-
-
34548231345
-
-
However, it has also been argued that B3LYP delivers rather consistent performance in a similar complex Mn system; see Lundberg et al., Inorg. Chem. 2004.
-
However, it has also been argued that B3LYP delivers rather consistent performance in a similar complex Mn system; see Lundberg et al., Inorg. Chem. 2004.
-
-
-
-
28
-
-
34548221785
-
-
V-corrole state and a high quintet ground manganese porphyrine spin state; see: de Visser Chem. - Eur. J. 2001.
-
V-corrole state and a high quintet ground manganese porphyrine spin state; see: de Visser Chem. - Eur. J. 2001.
-
-
-
-
29
-
-
34548262155
-
-
- with respect to MnO-corrole are unbalanced without a polarizable solvent environment. An activation energy obtained only within continuum solvent methodology is an important benchmark, to which the extended, PCM + explicit solvent model is compared in Figure 3.
-
- with respect to MnO-corrole are unbalanced without a polarizable solvent environment. An activation energy obtained only within continuum solvent methodology is an important benchmark, to which the extended, PCM + explicit solvent model is compared in Figure 3.
-
-
-
-
31
-
-
34548275352
-
-
The gas-phase transition-state search worked well, we believe, since the coordination of the hydroxide ion directly to the metal ion takes place, which is probably due to the cancellation of errors in describing the weakening MnO-HO and appearing HO-Mn bonds at the transition state (see TS1). To check this, the continuum solvent model was employed and relative energies were in agreement with the gas-phase data.
-
The gas-phase transition-state search worked well, we believe, since the coordination of the hydroxide ion directly to the metal ion takes place, which is probably due to the cancellation of errors in describing the weakening MnO-HO and appearing HO-Mn bonds at the transition state (see TS1). To check this, the continuum solvent model was employed and relative energies were in agreement with the gas-phase data.
-
-
-
-
32
-
-
16244415918
-
-
(a) Blomberg, L. M.; Blomberg, M. R. A.; Siegbahn, P. E. M. J. Inorg. Biochem. 2005, 99, 949-958.
-
(2005)
J. Inorg. Biochem
, vol.99
, pp. 949-958
-
-
Blomberg, L.M.1
Blomberg, M.R.A.2
Siegbahn, P.E.M.3
-
34
-
-
34548219871
-
-
Several higher spin states were located within less than 1kcal/mol from the reference triplet state
-
Several higher spin states were located within less than 1kcal/mol from the reference triplet state.
-
-
-
-
36
-
-
0345491105
-
-
(b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785.
-
(1988)
Phys. Rev. B: Condens. Matter Mater. Phys
, vol.37
, pp. 785
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
38
-
-
0347170005
-
-
(a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.
-
(1972)
J. Chem. Phys
, vol.56
, pp. 2257
-
-
Hehre, W.J.1
Ditchfield, R.2
Pople, J.A.3
-
39
-
-
33645949559
-
-
(b) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; Defrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
-
(1982)
J. Chem. Phys
, vol.77
, pp. 3654
-
-
Francl, M.M.1
Pietro, W.J.2
Hehre, W.J.3
Binkley, J.S.4
Gordon, M.S.5
Defrees, D.J.6
Pople, J.A.7
-
43
-
-
34548216133
-
-
Jaguar, version 6.0; Schrödinger, LLC: Portland, OR, 2005
-
Jaguar, version 6.0; Schrödinger, LLC: Portland, OR, 2005.
-
-
-
-
44
-
-
0000304948
-
-
The Jaguar 6.0 package treats solvated molecular systems with the SCRF method, using its own Poisson-Boltzmann solver, which makes it possible to compute energies in solvent and minimum-energy solvated structures of solvated transition states. For details, see: (a) Tannor, D. J.; Marten, B.; Murphy, R.; Friesner, R. A.; Sitkoff, D.; Nicholls, A.; Ringnalda, M.; Goddard, W. A., III; Honig, B. J. Am. Chem. Soc. 1994, 116, 11875.
-
The Jaguar 6.0 package treats solvated molecular systems with the SCRF method, using its own Poisson-Boltzmann solver, which makes it possible to compute energies in solvent and minimum-energy solvated structures of solvated transition states. For details, see: (a) Tannor, D. J.; Marten, B.; Murphy, R.; Friesner, R. A.; Sitkoff, D.; Nicholls, A.; Ringnalda, M.; Goddard, W. A., III; Honig, B. J. Am. Chem. Soc. 1994, 116, 11875.
-
-
-
-
45
-
-
0030180875
-
-
(b) Marten, B.; Kim, K.; Cortis, C.; Friesner, R. A.; Murphy, R. B.; Ringnalda, M. N.; Sitkoff, D.; Honig, B. J. Phys. Chem. 1996, 100, 11775.
-
(1996)
J. Phys. Chem
, vol.100
, pp. 11775
-
-
Marten, B.1
Kim, K.2
Cortis, C.3
Friesner, R.A.4
Murphy, R.B.5
Ringnalda, M.N.6
Sitkoff, D.7
Honig, B.8
|