-
1
-
-
0027883358
-
Database mining: A performance perspective
-
R. Agrawal, T. Imielinski,and A. Swami, Database mining: A performance perspective, IEEE Transactions on Knowledge and Data Engineering, Vol.5, pp. 914-925, 1993.
-
(1993)
IEEE Transactions on Knowledge and Data Engineering
, vol.5
, pp. 914-925
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.3
-
2
-
-
0000623497
-
A machine discovery from amino acid sequences by decision trees over regular patterns
-
S. Arikawa, S. Miyano, A. Shinohara, S. Kuhara, Y. Mukouchi and T. Shinohara, A machine discovery from amino acid sequences by decision trees over regular patterns, New Generation Computing, Vol.11, pp. 361-375, 1993.
-
(1993)
New Generation Computing
, vol.11
, pp. 361-375
-
-
Arikawa, S.1
Miyano, S.2
Shinohara, A.3
Kuhara, S.4
Mukouchi, Y.5
Shinohara, T.6
-
3
-
-
0034592930
-
Identifying prospective customers
-
P.B. Chou, E. Grossman, D. Gunopulos, and P. Kamesam, Identifying Prospective Customers, Proc. KDD 2000, pp. 447-456, 2000.
-
(2000)
Proc. KDD 2000
, pp. 447-456
-
-
Chou, P.B.1
Grossman, E.2
Gunopulos, D.3
Kamesam, P.4
-
5
-
-
22644449570
-
Mining pharmacy data helps to make profits
-
Y. Hamuro, N. Katoh, Y. Matsuda and K. Yada, Mining Pharmacy Data Helps to Make Profits, Data Mining and Knowledge Discovery, Vol.2 No.4, pp. 391-398, 1998.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.4
, pp. 391-398
-
-
Hamuro, Y.1
Katoh, N.2
Matsuda, Y.3
Yada, K.4
-
6
-
-
84974712011
-
A practical algorithm to find the best subsequence patterns
-
LNAI
-
M. Hirao, H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa, A Practical Algorithm to Find the Best Subsequence Patterns, Proc. of 3rd International Conference on Discovery Science, LNAI 1967, pp. 141-154, 2000.
-
(2000)
Proc. of 3rd International Conference on Discovery Science
, vol.1967
, pp. 141-154
-
-
Hirao, M.1
Hoshino, H.2
Shinohara, A.3
Takeda, M.4
Arikawa, S.5
-
7
-
-
84867648829
-
An optimized weighted majority decision
-
N. Horiguchi, K. Yada, Y. Hamuro, N. Katoh, and Y. Kambayashi, An Optimized Weighted Majority Decision, Proc. of INFORMS-KORMS Seoul 2000, pp. 1663-1669, 2000.
-
(2000)
Proc. of INFORMS-KORMS Seoul 2000
, pp. 1663-1669
-
-
Horiguchi, N.1
Yada, K.2
Hamuro, Y.3
Katoh, N.4
Kambayashi, Y.5
-
8
-
-
26844475846
-
A data mining system for managing customer relationship
-
E. Ip, K. Yada, Y. Hamuro, and N. Katoh, A Data Mining System for Managing Customer Relationship, Proc. of the 2000 Americas Conference on Information Systems, pp. 101-105, 2000.
-
(2000)
Proc. of the 2000 Americas Conference on Information Systems
, pp. 101-105
-
-
Ip, E.1
Yada, K.2
Hamuro, Y.3
Katoh, N.4
-
9
-
-
0034592960
-
Cross-sell: A fast promotion-tunable customeritem recommendation method based on conditionally independent probabilities
-
B. Kitts, D. Freed, and M. Vrieze, Cross-sell: A Fast Promotion-Tunable Customeritem Recommendation Method Based on Conditionally Independent Probabilities, Proc. KDD 2000, pp. 437-446, 2000.
-
(2000)
Proc. KDD 2000
, pp. 437-446
-
-
Kitts, B.1
Freed, D.2
Vrieze, M.3
-
10
-
-
84957811279
-
Weighted majority decision among several region rules for scientific
-
LNAI, Springer-Verlag
-
A. Nakaya, H. Furukawa, and S. Morishita, Weighted Majority Decision among Several Region Rules for Scientific, Proc. of Second International Conference on Discovery Science, LNAI 1721, Springer-Verlag, pp. 17-29, 1999.
-
(1999)
Proc. of Second International Conference on Discovery Science
, vol.1721
, pp. 17-29
-
-
Nakaya, A.1
Furukawa, H.2
Morishita, S.3
-
11
-
-
33744584654
-
Induction of decision trees
-
J. R. Quinlan, Induction of Decision Trees, Machine Learning, Vol.1, pp. 81-106, 1986.
-
(1986)
Machine Learning
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
13
-
-
84867630978
-
-
J. R. Quinlan, See5/C5.0, http:www.rulequest.com, Rulequest Research, 1999.
-
(1999)
See5/C5.0
-
-
Quinlan, J.R.1
-
15
-
-
0001587556
-
Knowledge acquisition from amino acid sequences by machine learning system BONSAI
-
S. Shimozono, A. Shinohara, T. Shinohara, S. Miyano, S. Kuhara and S. Arikawa, Knowledge Acquisition from Amino Acid Sequences by Machine Learning System BONSAI, Trans. Information Processing Society of Japan, Vol.35, pp. 2009-2018, 1994.
-
(1994)
Trans. Information Processing Society of Japan
, vol.35
, pp. 2009-2018
-
-
Shimozono, S.1
Shinohara, A.2
Shinohara, T.3
Miyano, S.4
Kuhara, S.5
Arikawa, S.6
-
16
-
-
0033277434
-
Choosing data-mining methods for multiple classification: Representational and performance measurement implications for decision support
-
W. E. Spangler, J. H. May and L. G. Vargas, Choosing Data-mining Methods for Multiple Classification: Representational and Performance Measurement Implications for Decision Support, Journal of Management Information System, Vol.16 No.1, pp. 37-62, 1999.
-
(1999)
Journal of Management Information System
, vol.16
, Issue.1
, pp. 37-62
-
-
Spangler, W.E.1
May, J.H.2
Vargas, L.G.3
-
17
-
-
0033277415
-
Special section: Data mining
-
T. K. Sung, H. M. Chung and P. Gray, Special Section: Data Mining, Journal of Management Information System, Vol.16 No.1, pp. 11-16, 1999.
-
(1999)
Journal of Management Information System
, vol.16
, Issue.1
, pp. 11-16
-
-
Sung, T.K.1
Chung, H.M.2
Gray, P.3
-
18
-
-
0004135457
-
-
[14]
-
R. Uthurusamy, U.M. Fayyad, and S. Spangler, Learning Useful Rules from Inconclusive Data, In [14], pp. 141-157, 1991.
-
(1991)
Learning Useful Rules from Inconclusive Data
, pp. 141-157
-
-
Uthurusamy, R.1
Fayyad, U.M.2
Spangler, S.3
|