-
2
-
-
34548031476
-
-
I. Bratko, M. Možina, Argumentation and machine learning, in: Deliverable 2.1 for the ASPIC project, 2004
-
-
-
-
3
-
-
29144474860
-
-
S. Brüninghaus, K.D. Ashley, Predicting the outcome of case-based legal arguments, in: G. Sartor (Ed.), Proceedings of the 9th International Conference on Artificial Intelligence and Law (ICAIL), Edinburgh, United Kingdom, June 2003, pp. 233-242
-
-
-
-
4
-
-
34548019342
-
-
B. Cestnik, Estimating probabilities: A crucial task in machine learning, in: Proceedings of the Ninth European Conference on Artificial Intelligence, 1990, pp. 147-149
-
-
-
-
5
-
-
34548033349
-
-
P. Clark, Representing arguments as background knowledge for constraining generalisation, in: D. Sleeman (Ed.), Third European Working Session on Learning, October 1988
-
-
-
-
6
-
-
85015191605
-
-
P. Clark, R. Boswell, Rule induction with CN2: Some recent improvements, in: Machine Learning-Proceedings of the Fifth European Conference (EWSL-91), Berlin, 1991, pp. 151-163
-
-
-
-
8
-
-
34548038016
-
-
J. Demšar, B. Zupan, Orange: From experimental machine learning to interactive data mining, White Paper, http://www.ailab.si/orange, Faculty of Computer and Information Science, University of Ljubljana, 2004
-
-
-
-
9
-
-
22844456607
-
The role of Occam's razor in knowledge discovery
-
Domingos P. The role of Occam's razor in knowledge discovery. Data Mining and Knowledge Discovery 3 4 (1999) 409-425
-
(1999)
Data Mining and Knowledge Discovery
, vol.3
, Issue.4
, pp. 409-425
-
-
Domingos, P.1
-
11
-
-
34548008484
-
-
S.A. Gomez, C.I. Chesnevar, Integrating defeasible argumentation and machine learning techniques, Technical report, Universidad Nacional del Sur, 2004
-
-
-
-
12
-
-
34548022709
-
Integrating defeasible argumentation with fuzzy art neural networks for pattern classification
-
Gomez S.A., and Chesnevar C.I. Integrating defeasible argumentation with fuzzy art neural networks for pattern classification. Journal of Computer Science and Technology 4 1 (April 2004) 45-51
-
(2004)
Journal of Computer Science and Technology
, vol.4
, Issue.1
, pp. 45-51
-
-
Gomez, S.A.1
Chesnevar, C.I.2
-
13
-
-
0033907286
-
Multiple comparisons in induction algorithms
-
Jensen D.D., and Cohen P.R. Multiple comparisons in induction algorithms. Machine Learning 38 3 (March 2000) 309-338
-
(2000)
Machine Learning
, vol.38
, Issue.3
, pp. 309-338
-
-
Jensen, D.D.1
Cohen, P.R.2
-
14
-
-
33750337560
-
Why is rule learning optimistic and how to correct it
-
Fuernkranz J., Scheffer T., and Spiliopoulou M. (Eds). Berlin, Springer-Verlag
-
Možina M., Demšar J., Žabkar J., and Bratko I. Why is rule learning optimistic and how to correct it. In: Fuernkranz J., Scheffer T., and Spiliopoulou M. (Eds). Proceedings of 17th European Conference on Machine Learning (ECML 2006). Berlin (2006), Springer-Verlag 330-340
-
(2006)
Proceedings of 17th European Conference on Machine Learning (ECML 2006)
, pp. 330-340
-
-
Možina, M.1
Demšar, J.2
Žabkar, J.3
Bratko, I.4
-
15
-
-
33746896235
-
Argument based machine learning applied to law
-
Možina M., Žabkar J., Bench-Capon T., and Bratko I. Argument based machine learning applied to law. Artificial Intelligence and Law 13 1 (2006) 53-73
-
(2006)
Artificial Intelligence and Law
, vol.13
, Issue.1
, pp. 53-73
-
-
Možina, M.1
Žabkar, J.2
Bench-Capon, T.3
Bratko, I.4
-
17
-
-
34548008241
-
-
M. Možina, J. Žabkar, I. Bratko, D3.4: Implementation of and experiments with abml and mlba, ASPIC Deliverable D3.4, 2006
-
-
-
-
18
-
-
34548038495
-
-
P.M. Murphy, D.W. Aha, UCI repository of machine learning databases, http://www.ics.uci.edu/~mlearn/mlrepository.html, Irvine, CA: University of California, Department of Information and Computer Science, 1994
-
-
-
-
19
-
-
35048871107
-
Beyond concise and colorful: Learning intelligible rules
-
Newport Beach, CA, AAAI Press
-
Pazzani M., Mani S., and Shankle W.R. Beyond concise and colorful: Learning intelligible rules. Third International Conference on Knowledge Discovery and Data Mining. Newport Beach, CA (1997), AAAI Press 235-238
-
(1997)
Third International Conference on Knowledge Discovery and Data Mining
, pp. 235-238
-
-
Pazzani, M.1
Mani, S.2
Shankle, W.R.3
-
20
-
-
35748933057
-
Influence of prior knowledge on concept acquisition: Experimental and computational results
-
Pazzani M.J. Influence of prior knowledge on concept acquisition: Experimental and computational results. Journal of Experimental Psychology: Learning, Memory and Cognition 17 (1991) 416-432
-
(1991)
Journal of Experimental Psychology: Learning, Memory and Cognition
, vol.17
, pp. 416-432
-
-
Pazzani, M.J.1
-
21
-
-
0011112281
-
Logics for defeasible argumentation
-
Kluwer Academic Publishers, Dordrecht
-
Prakken H., and Vreeswijk G. Logics for defeasible argumentation. Handbook of Philosophical Logic. second ed. vol. 4 (2002), Kluwer Academic Publishers, Dordrecht 218-319
-
(2002)
Handbook of Philosophical Logic. second ed.
, vol.4
, pp. 218-319
-
-
Prakken, H.1
Vreeswijk, G.2
-
22
-
-
0020557059
-
Coronary risk factor screening in three rural communities
-
Rousseauw J., du Plessis J., Benade A., Jordann P., Kotze J., Jooste P., and Ferreira J. Coronary risk factor screening in three rural communities. South African Medical Journal 64 (1983) 430-436
-
(1983)
South African Medical Journal
, vol.64
, pp. 430-436
-
-
Rousseauw, J.1
du Plessis, J.2
Benade, A.3
Jordann, P.4
Kotze, J.5
Jooste, P.6
Ferreira, J.7
-
23
-
-
84940517521
-
-
J. Žabkar, M. Možina, J. Videčnik, I. Bratko, Argument based machine learning in a medical domain, in: E.P. Dunne, T.J.M. Bench-Capon (Eds.), Proceedings of Computational Models of Argument (COMMA), 2006, pp. 59-70
-
-
-
|