메뉴 건너뛰기




Volumn , Issue , 2005, Pages 1-9

Learning factor graphs in polynomial time & sample complexity

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BAYESIAN NETWORKS; MAXIMUM LIKELIHOOD ESTIMATION; POLYNOMIAL APPROXIMATION;

EID: 80053202166     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (9)

References (29)
  • 5
    • 0001019707 scopus 로고    scopus 로고
    • Learning bayesian networks is NP complete
    • D. Fisher and H. Lenz (Eds.). Springer- Verlag
    • Chickering, D. (1996). Learning Bayesian networks is NP Complete. In D. Fisher and H. Lenz (Eds.), Learning from data: Artificial intelligence and statistics v,121-130. Springer-Verlag.
    • (1996) Learning from Data: Artificial Intelligence and Statistics , vol.121-130
    • Chickering, D.1
  • 6
    • 0038517651 scopus 로고    scopus 로고
    • Finding optimal Bayesian networks
    • Chickering, D., & Meek, C. (2002). Finding optimal Bayesian networks. Proc. UAI.
    • (2002) Proc. UAI
    • Chickering, D.1    Meek, C.2
  • 7
    • 33747736365 scopus 로고    scopus 로고
    • Largesample learning of Bayesian networks is hard
    • Chickering, D., Meek, C., & Heckerman, D. (2003). Largesample learning of Bayesian networks is hard. Proc. UAI.
    • (2003) Proc. UAI
    • Chickering, D.1    Meek, C.2    Heckerman, D.3
  • 8
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • Chow, C. K., & Liu, C. N. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory.
    • (1968) IEEE Transactions on Information Theory
    • Chow, C.K.1    Liu, C.N.2
  • 9
    • 0000695777 scopus 로고
    • On consistency of a class of estimators for exponential families of Markov random fields on the lattice
    • Comets, F. (1992). On consistency of a class of estimators for exponential families of Markov random fields on the lattice. Annals of Statistics.
    • (1992) Annals of Statistics
    • Comets, F.1
  • 11
    • 0031269467 scopus 로고    scopus 로고
    • The sample complexity of learning fixed structure Bayesian networks
    • Dasgupta, S. (1997). The sample complexity of learning fixed structure Bayesian networks. Machine Learning.
    • (1997) Machine Learning
    • Dasgupta, S.1
  • 12
    • 0012135466 scopus 로고    scopus 로고
    • Learning polytrees
    • Dasgupta, S. (1999). Learning polytrees. Proc. UAI.
    • (1999) Proc. UAI
    • Dasgupta, S.1
  • 14
    • 0011582345 scopus 로고    scopus 로고
    • Efficient stepwise selection in decomposable models
    • Morgan Kaufmann Publishers Inc
    • Deshpande, A., Garofalakis, M. N., & Jordan, M. I. (2001). Efficient stepwise selection in decomposable models. Proc. UAI (pp. 128-135). Morgan Kaufmann Publishers Inc.
    • (2001) Proc. UAI , pp. 128-135
    • Deshpande, A.1    Garofalakis, M.N.2    Jordan, M.I.3
  • 15
    • 0000319413 scopus 로고    scopus 로고
    • On the sample complexity of learning Bayesian networks
    • Friedman, N., & Yakhini, Z. (1996). On the sample complexity of learning Bayesian networks. Proc. UAI.
    • (1996) Proc. UAI
    • Friedman, N.1    Yakhini, Z.2
  • 19
    • 33747644284 scopus 로고
    • Learning and robust learning of product distributions
    • Hoffgen, K. L. (1993). Learning and robust learning of product distributions. Proc. COLT.
    • (1993) Proc. COLT
    • Hoffgen, K.L.1
  • 21
    • 0030509462 scopus 로고    scopus 로고
    • A consistent model selection procedure for Markov random fields based on penalized pseudolikelihood
    • Ji, C., & Seymour, L. (1996). A consistent model selection procedure for Markov random fields based on penalized pseudolikelihood. Annals of Applied Probability.
    • (1996) Annals of Applied Probability
    • Ji, C.1    Seymour, L.2
  • 25
    • 10244268660 scopus 로고    scopus 로고
    • Efficiently inducing features of conditional random fields
    • McCallum, A. (2003). Efficiently inducing features of conditional random fields. Proc. UAI.
    • (2003) Proc. UAI
    • McCallum, A.1
  • 26
  • 27
    • 60649090124 scopus 로고    scopus 로고
    • PAC-learning bounded tree-width graphical models
    • Narasimhan, M., & Bilmes, J. (2004). PAC-learning bounded tree-width graphical models. Proc. UAI.
    • (2004) Proc. UAI
    • Narasimhan, M.1    Bilmes, J.2
  • 29
    • 0041955878 scopus 로고    scopus 로고
    • Maximum likelihood bounded tree-width Markov networks
    • Srebro, N. (2001). Maximum likelihood bounded tree-width Markov networks. Proc. UAI.
    • (2001) Proc. UAI
    • Srebro, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.