-
1
-
-
0037437103
-
P-, T-, PT-, and CPT-invariance of Hermitian Hamiltonians
-
Ahmed Z 2003 P-, T-, PT-, and CPT-invariance of Hermitian Hamiltonians Phys. Lett. A 310 39-142
-
(2003)
Phys. Lett.
, vol.310
, Issue.2-3
, pp. 139-142
-
-
Ahmed, Z.1
-
5
-
-
0042636867
-
Schrödinger operators with complex potential but real spectrum
-
Cannata F, Junker G and Trost J 1998 Schrödinger operators with complex potential but real spectrum Phys. Lett. A 246 219-26
-
(1998)
Phys. Lett.
, vol.246
, Issue.3-4
, pp. 219-226
-
-
Cannata, F.1
Junker, G.2
Trost, J.3
-
6
-
-
0034658983
-
Supersymmetry without hermiticity within PT symmetric quantum mechanics
-
Znojil M, Cannata F, Bagchi B and Roychoudhury R 2000 Supersymmetry without hermiticity within PT symmetric quantum mechanics Phys. Lett. B 483 284
-
(2000)
Phys. Lett.
, vol.483
, Issue.1-3
, pp. 284
-
-
Znojil, M.1
Cannata, F.2
Bagchi, B.3
Roychoudhury, R.4
-
7
-
-
0037471496
-
Two-dimensional SUSY Pseudo-hermiticity without separation of variables
-
Cannata F, Ioffe M V and Nishniadinze D N 2003 Two-dimensional SUSY Pseudo-hermiticity without separation of variables Phys. Lett. A 310 344-52
-
(2003)
Phys. Lett.
, vol.310
, Issue.5-6
, pp. 344-352
-
-
Cannata, F.1
Ioffe, M.V.2
Nishniadinze, D.N.3
-
8
-
-
0038355626
-
Systematic search for PT symmetric potentials with real energy spectra
-
Levai G and Znojil M 2000 Systematic search for PT symmetric potentials with real energy spectra J. Phys. A: Math. Gen. 33 7165
-
(2000)
J. Phys. A: Math. Gen.
, vol.33
, Issue.40
, pp. 7165
-
-
Levai, G.1
Znojil, M.2
-
10
-
-
34547758826
-
Special issue dedicated to the physics of non-Hermitian operators (Stellenbosch, South Africa, 23-25 November 2005)
-
2006 Special issue dedicated to the physics of non-Hermitian operators (Stellenbosch, South Africa, 23-25 November 2005) J. Phys. A Math. Gen. 39 (32)
-
(2006)
J. Phys. A Math. Gen.
, vol.39
, Issue.32
-
-
-
11
-
-
29144466440
-
Norm estimates of complex symmetric operators applied to quantum systems
-
Prodan E, Garcia S R and Putinar M 2006 Norm estimates of complex symmetric operators applied to quantum systems J. Phys. A: Math. Gen. 39 389-400
-
(2006)
J. Phys. A: Math. Gen.
, vol.39
, Issue.2
, pp. 389-400
-
-
Prodan, E.1
Garcia, S.R.2
Putinar, M.3
-
12
-
-
0036025753
-
On the reality of the eigenvalues for a class of PT-symmetric oscillators
-
Shin K C 2002 On the reality of the eigenvalues for a class of PT-symmetric oscillators Commun. Math. Phys. 229 543-64
-
(2002)
Commun. Math. Phys.
, vol.229
, Issue.3
, pp. 543-564
-
-
Shin, K.C.1
-
13
-
-
0035920075
-
Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics
-
Dorey P, Dunning C and Tateo R 2001 Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics J. Phys. A: Math. Gen. 34 5679-704
-
(2001)
J. Phys. A: Math. Gen.
, vol.34
, Issue.28
, pp. 5679-5704
-
-
Dorey, P.1
Dunning, C.2
Tateo, R.3
-
14
-
-
0035920055
-
Supersymmetry and the spontaneous breakdown of PT symmetry
-
Dorey P E, Dunning C and Tateo R 2001 Supersymmetry and the spontaneous breakdown of PT symmetry J. Phys. A: Math. Gen. 34 L391-400
-
(2001)
J. Phys. A: Math. Gen.
, vol.34
, Issue.28
-
-
Dorey, P.E.1
Dunning, C.2
Tateo, R.3
-
15
-
-
11844284804
-
Spectra of -symmetric operators and perturbation theory
-
Caliceti E, Graffi S and Sjöstrand J 2005 Spectra of -symmetric operators and perturbation theory J. Phys. A: Math. Gen. 38 185-93
-
(2005)
J. Phys. A: Math. Gen.
, vol.38
, Issue.1
, pp. 185-193
-
-
Caliceti, E.1
Graffi, S.2
Sjöstrand, J.3
-
16
-
-
27844520853
-
On a class of non-self-adjoint quantum non-linear oscillators with real spectrum
-
Caliceti E and Graffi S 2005 On a class of non-self-adjoint quantum non-linear oscillators with real spectrum J. Nonlinear Math. Phys. 12 138-45
-
(2005)
J. Nonlinear Math. Phys.
, vol.12
, pp. 138-145
-
-
Caliceti, E.1
Graffi, S.2
-
18
-
-
0035981958
-
Pseudo-hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian
-
Mostafazadeh A 2002 Pseudo-hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian J. Math. Phys. 43 205-12
-
(2002)
J. Math. Phys.
, vol.43
, Issue.1
, pp. 205-212
-
-
Mostafazadeh, A.1
-
19
-
-
0035981827
-
Pseudo-hermiticity versus PT-symmetry: II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum
-
Mostafazadeh A 2002 Pseudo-hermiticity versus PT-symmetry: II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum J. Math. Phys. 43 2814-6
-
(2002)
J. Math. Phys.
, vol.43
, Issue.5
, pp. 2814-2816
-
-
Mostafazadeh, A.1
-
20
-
-
0035981741
-
Pseudo-Hermiticity versus PT-symmetry: III. Equivalence of pseudo-hermiticity and the presence of antilinear symmetries
-
Mostafazadeh A 2002 Pseudo-Hermiticity versus PT-symmetry: III. Equivalence of pseudo-hermiticity and the presence of antilinear symmetries J. Math. Phys. 43 3944-51
-
(2002)
J. Math. Phys.
, vol.43
, Issue.8
, pp. 3944-3951
-
-
Mostafazadeh, A.1
-
21
-
-
1142292329
-
Completeness and orthonormality in PT-symmetric quantum systems
-
Weigert S 2003 Completeness and orthonormality in PT-symmetric quantum systems Phys. Rev. A 68 06211-5
-
(2003)
Phys. Rev.
, vol.68
, pp. 06211-06215
-
-
Weigert, S.1
-
22
-
-
0036930501
-
Pseudo-hermiticity for a class of non-diagonalizable Hamiltonians
-
Mostafazadeh A 2002 Pseudo-hermiticity for a class of non-diagonalizable Hamiltonians J. Math. Phys. 43 6342-52
-
(2002)
J. Math. Phys.
, vol.43
, Issue.12
, pp. 6343-6352
-
-
Mostafazadeh, A.1
-
23
-
-
34248594954
-
Non-linear supersymmetry for non-Hermitian, non-diagonalizable Hamiltonians: I. General properties
-
Andrianov A A, Cannata F and Sokolov A V 2007 Non-linear supersymmetry for non-Hermitian, non-diagonalizable Hamiltonians: I. General properties Nucl. Phys. B 773 107-36
-
(2007)
Nucl. Phys.
, vol.773
, Issue.3
, pp. 107-136
-
-
Andrianov, A.A.1
Cannata, F.2
Sokolov, A.V.3
-
25
-
-
0142041473
-
On the pseudo-Hermitian nondiagonalizable Hamiltonians
-
Scolarici G and Solombrino L 2003 On the pseudo-Hermitian nondiagonalizable Hamiltonians J. Math. Phys. 44 4450-9
-
(2003)
J. Math. Phys.
, vol.44
, Issue.10
, pp. 4450-4459
-
-
Scolarici, G.1
Solombrino, L.2
-
26
-
-
29144482489
-
Complex symmetric operators and applications
-
Garcia S R and Putinar M 2006 Complex symmetric operators and applications Trans. Am. Math. Soc. 358 1285-315
-
(2006)
Trans. Am. Math. Soc.
, vol.358
, Issue.3
, pp. 1285-1315
-
-
Garcia, S.R.1
Putinar, M.2
-
27
-
-
34547737089
-
Complex symmetric operators and applications: II.
-
Garcia S R and Putinar M 2007 Complex symmetric operators and applications: II. Trans. Am. Math. Soc. 359 3913-31
-
(2007)
Trans. Am. Math. Soc.
, vol.359
, pp. 3913-3931
-
-
Garcia, S.R.1
Putinar, M.2
-
28
-
-
5444247309
-
Real spectra of -symmetric operators and perturbation theory
-
Caliceti E 2004 Real spectra of -symmetric operators and perturbation theory Czech. J. Phys. 54 1065-8
-
(2004)
Czech. J. Phys.
, vol.54
, Issue.10
, pp. 1065-1068
-
-
Caliceti, E.1
-
29
-
-
84980077803
-
On a Hilbert space of analytic functions and an associated integral transform
-
Bargmann V 1961 On a Hilbert space of analytic functions and an associated integral transform Commun. Pure Appl. Math. 14 187-214
-
(1961)
Commun. Pure Appl. Math.
, vol.14
, Issue.3
, pp. 187-214
-
-
Bargmann, V.1
-
30
-
-
0033240825
-
Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian
-
Bender C M and Dunne G V 1999 Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian J. Math. Phys. 40 4616-21
-
(1999)
J. Math. Phys.
, vol.40
, Issue.10
, pp. 4616-4621
-
-
Bender, C.M.1
Dunne, G.V.2
-
31
-
-
0035532258
-
Numerical evidence that the perturbation expansion for a Non-Hermitian PT-symmetric Hamiltonian is stieltjes
-
Bender C M and Weniger E J 2001 Numerical evidence that the perturbation expansion for a Non-Hermitian PT-symmetric Hamiltonian is stieltjes J. Math. Phys. 42 2167-83
-
(2001)
J. Math. Phys.
, vol.42
, Issue.5
, pp. 2167-2183
-
-
Bender, C.M.1
Weniger, E.J.2
|