-
1
-
-
11544339752
-
-
C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998). Note that in this reference the notation N represents the quantity 2 + ∈.
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 5243
-
-
Bender, C.M.1
Boettcher, S.2
-
2
-
-
0001660309
-
-
Several years ago, D. Bessis and J. Zinn-Justin conjectured that the spectrum of H in Eq. (1.1) for the special case ∈ = 1 is real (private communication). A partial proof for the reality of the spectrum in this special case has been given by M. P. Blencowe, H. Jones, and A. P. Korte, Phys. Rev. D 57, 5092 (1998) using the linear delta expansion and by E. Delabaere and F. Pham, Ann. Phys. 261, 180 (1997) using WKB methods.
-
(1998)
Phys. Rev. D
, vol.57
, pp. 5092
-
-
Blencowe, M.P.1
Jones, H.2
Korte, A.P.3
-
3
-
-
0031537396
-
-
Several years ago, D. Bessis and J. Zinn-Justin conjectured that the spectrum of H in Eq. (1.1) for the special case ∈ = 1 is real (private communication). A partial proof for the reality of the spectrum in this special case has been given by M. P. Blencowe, H. Jones, and A. P. Korte, Phys. Rev. D 57, 5092 (1998) using the linear delta expansion and by E. Delabaere and F. Pham, Ann. Phys. 261, 180 (1997) using WKB methods.
-
(1997)
Ann. Phys.
, vol.261
, pp. 180
-
-
Delabaere, E.1
Pham, F.2
-
7
-
-
0000600130
-
-
N. Hatano and D. R. Nelson, Phys. Rev. Lett. 77, 570 (1996); Phys. Rev. B 56, 8651 (1997).
-
(1997)
Phys. Rev. B
, vol.56
, pp. 8651
-
-
-
10
-
-
0000387131
-
-
4 field theory has been argued using analytic continuation techniques [see K. Gawadzki and A. Kupiainen, Nucl. Phys. B 257, 474 (1985)] and using Gaussian approximation [see B. Rosenstein and A. Kovner, Phys. Rev. D 40, 504 (1989)].
-
(1985)
Nucl. Phys. B
, vol.257
, pp. 474
-
-
Gawadzki, K.1
Kupiainen, A.2
-
11
-
-
33744655970
-
-
4 field theory has been argued using analytic continuation techniques [see K. Gawadzki and A. Kupiainen, Nucl. Phys. B 257, 474 (1985)] and using Gaussian approximation [see B. Rosenstein and A. Kovner, Phys. Rev. D 40, 504 (1989)].
-
(1989)
Phys. Rev. D
, vol.40
, pp. 504
-
-
Rosenstein, B.1
Kovner, A.2
-
15
-
-
85034126677
-
-
note
-
Equation (2.3) is a complex version of the statement that the velocity is the time derivative of the position (v = dx/dt). Here, the time is real but the velocity and position are complex.
-
-
-
-
19
-
-
0003864328
-
-
McGraw-Hill, New York
-
A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 2.
-
(1953)
Higher Transcendental Functions
, vol.2
-
-
Erdelyi, A.1
Magnus, W.2
Oberhettinger, F.3
Tricomi, F.G.4
|