-
1
-
-
33646605469
-
-
note
-
3 = i.
-
-
-
-
3
-
-
33646622528
-
-
These classes of Hamiltonians are all different
-
These classes of Hamiltonians are all different.
-
-
-
-
4
-
-
33646609552
-
-
preprint, 2003
-
C. M. Bender, D. C. Brody, L. P. Hughston, and B. K. Meister, preprint, 2003.
-
-
-
Bender, C.M.1
Brody, D.C.2
Hughston, L.P.3
Meister, B.K.4
-
6
-
-
11544339752
-
-
C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998). In this reference there is an extended discussion of the wedges in the complex-x plane and the contour along which the differential equation (4) is solved. See especially Fig. 2 in this reference.
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 5243
-
-
Bender, C.M.1
Boettcher, S.2
-
7
-
-
33646621817
-
-
note
-
-t do not exhibit this time-reversal symmetry while the solution y(t) = cosh(t) is time-reversal symmetric. The same is true with a system whose Hamiltonian is PT symmetric. Even if the Schrödinger equation and the corresponding boundary conditions are PT symmetric, the wave function that solves the Schrödinger equation boundary value problem may not be symmetric under space-time reflection. When the solution exhibits PT symmetry, we say that the PT symmetry is unbroken. Conversely, if the solution does not possess PT symmetry, we say that the PT symmetry is broken.
-
-
-
-
9
-
-
0035920055
-
-
P. Dorey, C. Dunning, and R. Tateo, J. Phys. A 34, L391 (2001); 34, 5679 (2001).
-
(2001)
J. Phys. A
, vol.34
, pp. 5679
-
-
-
10
-
-
0038355626
-
-
G. Lévai and M. Znojil, J. Phys. A 33, 7165 (2000); C. M. Bender, G. V. Dunne, P. N. Meisinger, and M. Simsek, Phys. Lett. A 281, 311 (2001); B. Bagchi and C. Quesne, 300, 18 (2002); D. T. Trinh, Ph.D. thesis, University of Nice-Sophia Antipolis, 2002, and references therein.
-
(2000)
J. Phys. A
, vol.33
, pp. 7165
-
-
Lévai, G.1
Znojil, M.2
-
11
-
-
0035794837
-
-
G. Lévai and M. Znojil, J. Phys. A 33, 7165 (2000); C. M. Bender, G. V. Dunne, P. N. Meisinger, and M. Simsek, Phys. Lett. A 281, 311 (2001); B. Bagchi and C. Quesne, 300, 18 (2002); D. T. Trinh, Ph.D. thesis, University of Nice-Sophia Antipolis, 2002, and references therein.
-
(2001)
Phys. Lett. A
, vol.281
, pp. 311
-
-
Bender, C.M.1
Dunne, G.V.2
Meisinger, P.N.3
Simsek, M.4
-
12
-
-
0002948453
-
-
G. Lévai and M. Znojil, J. Phys. A 33, 7165 (2000); C. M. Bender, G. V. Dunne, P. N. Meisinger, and M. Simsek, Phys. Lett. A 281, 311 (2001); B. Bagchi and C. Quesne, 300, 18 (2002); D. T. Trinh, Ph.D. thesis, University of Nice-Sophia Antipolis, 2002, and references therein.
-
(2002)
Phys. Lett. A
, vol.300
, pp. 18
-
-
Bagchi, B.1
Quesne, C.2
-
13
-
-
0038355626
-
-
Ph.D. thesis, University of Nice-Sophia Antipolis, and references therein
-
G. Lévai and M. Znojil, J. Phys. A 33, 7165 (2000); C. M. Bender, G. V. Dunne, P. N. Meisinger, and M. Simsek, Phys. Lett. A 281, 311 (2001); B. Bagchi and C. Quesne, 300, 18 (2002); D. T. Trinh, Ph.D. thesis, University of Nice-Sophia Antipolis, 2002, and references therein.
-
(2002)
-
-
Trinh, D.T.1
-
14
-
-
0035981958
-
-
A. Mostafazadeh, J. Math. Phys. 43, 205 (2002); 43, 2814 (2002); 43, 3944 (2002); preprint math-ph/0203041; Z. Ahmed, Phys. Lett. A294, 287 (2002); G. S. Japaridze, J. Phys. A 35, 1709 (2002); M. Znojil, math-ph/0104012; A. Ramirez and B. Mielnik, Working Paper 2002.
-
(2002)
J. Math. Phys.
, vol.43
, pp. 205
-
-
Mostafazadeh, A.1
-
15
-
-
0035981827
-
-
A. Mostafazadeh, J. Math. Phys. 43, 205 (2002); 43, 2814 (2002); 43, 3944 (2002); preprint math-ph/0203041; Z. Ahmed, Phys. Lett. A294, 287 (2002); G. S. Japaridze, J. Phys. A 35, 1709 (2002); M. Znojil, math-ph/0104012; A. Ramirez and B. Mielnik, Working Paper 2002.
-
(2002)
J. Math. Phys.
, vol.43
, pp. 2814
-
-
-
16
-
-
0035981741
-
-
preprint math-ph/0203041
-
A. Mostafazadeh, J. Math. Phys. 43, 205 (2002); 43, 2814 (2002); 43, 3944 (2002); preprint math-ph/0203041; Z. Ahmed, Phys. Lett. A294, 287 (2002); G. S. Japaridze, J. Phys. A 35, 1709 (2002); M. Znojil, math-ph/0104012; A. Ramirez and B. Mielnik, Working Paper 2002.
-
(2002)
J. Math. Phys.
, vol.43
, pp. 3944
-
-
-
17
-
-
1642631252
-
-
A. Mostafazadeh, J. Math. Phys. 43, 205 (2002); 43, 2814 (2002); 43, 3944 (2002); preprint math-ph/0203041; Z. Ahmed, Phys. Lett. A294, 287 (2002); G. S. Japaridze, J. Phys. A 35, 1709 (2002); M. Znojil, math-ph/0104012; A. Ramirez and B. Mielnik, Working Paper 2002.
-
(2002)
Phys. Lett. A
, vol.294
, pp. 287
-
-
Ahmed, Z.1
-
18
-
-
0037155037
-
-
A. Mostafazadeh, J. Math. Phys. 43, 205 (2002); 43, 2814 (2002); 43, 3944 (2002); preprint math-ph/0203041; Z. Ahmed, Phys. Lett. A294, 287 (2002); G. S. Japaridze, J. Phys. A 35, 1709 (2002); M. Znojil, math-ph/0104012; A. Ramirez and B. Mielnik, Working Paper 2002.
-
(2002)
J. Phys. A
, vol.35
, pp. 1709
-
-
Japaridze, G.S.1
-
19
-
-
0035981741
-
-
math-ph/0104012
-
A. Mostafazadeh, J. Math. Phys. 43, 205 (2002); 43, 2814 (2002); 43, 3944 (2002); preprint math-ph/0203041; Z. Ahmed, Phys. Lett. A294, 287 (2002); G. S. Japaridze, J. Phys. A 35, 1709 (2002); M. Znojil, math-ph/0104012; A. Ramirez and B. Mielnik, Working Paper 2002.
-
-
-
Znojil, M.1
-
20
-
-
0035981741
-
-
A. Mostafazadeh, J. Math. Phys. 43, 205 (2002); 43, 2814 (2002); 43, 3944 (2002); preprint math-ph/0203041; Z. Ahmed, Phys. Lett. A294, 287 (2002); G. S. Japaridze, J. Phys. A 35, 1709 (2002); M. Znojil, math-ph/0104012; A. Ramirez and B. Mielnik, Working Paper 2002.
-
(2002)
Working Paper
-
-
Ramirez, A.1
Mielnik, B.2
-
21
-
-
0034259223
-
-
C. M. Bender, S. Boettcher, and V. M. Savage, J. Math. Phys. 41, 6381 (2000); C. M. Bender, S. Boettcher, P. N. Meisinger, and Q. Wang, Phys. Lett. A 302, 286 (2002).
-
(2000)
J. Math. Phys.
, vol.41
, pp. 6381
-
-
Bender, C.M.1
Boettcher, S.2
Savage, V.M.3
-
22
-
-
0037201221
-
-
C. M. Bender, S. Boettcher, and V. M. Savage, J. Math. Phys. 41, 6381 (2000); C. M. Bender, S. Boettcher, P. N. Meisinger, and Q. Wang, Phys. Lett. A 302, 286 (2002).
-
(2002)
Phys. Lett. A
, vol.302
, pp. 286
-
-
Bender, C.M.1
Boettcher, S.2
Meisinger, P.N.3
Wang, Q.4
-
23
-
-
0034647357
-
-
G. A. Mezincescu, J. Phys. A 33, 4911 (2000); C. M. Bender and Q. Wang, ibid. 34, 3325 (2001).
-
(2000)
J. Phys. A
, vol.33
, pp. 4911
-
-
Mezincescu, G.A.1
-
24
-
-
0035918126
-
-
G. A. Mezincescu, J. Phys. A 33, 4911 (2000); C. M. Bender and Q. Wang, ibid. 34, 3325 (2001).
-
(2001)
J. Phys. A
, vol.34
, pp. 3325
-
-
Bender, C.M.1
Wang, Q.2
-
27
-
-
33646619280
-
-
note
-
The PT norm of a state determines its parity type (Ref. 4). We can regard C as representing the operator that determines the C charge of the state. Quantum states having opposite C charge possess opposite parity type.
-
-
-
-
28
-
-
33646617151
-
-
note
-
The parity operator in coordinate space is explicitly real P(x,y) = δ(x + y); the operator C(x,y) is complex because it is a sum of products of complex functions, as we see in (15). The complexity of the C operator can be seen explicitly in perturbative calculations of C(x,y) (Ref. 21).
-
-
-
-
29
-
-
33646605468
-
-
note
-
Note that if a function satisfies a linear ordinary differential equation, then the function is analytic wherever the coefficient functions of the differential equation are analytic. The Schrödinger equation (4) is linear and its coefficients are analytic except for a branch cut at the origin; this branch cut can be taken to run up the imaginary axis. We choose the integration contour for the inner product (8) so that it does not cross the positive imaginary axis. Path independence occurs because the integrand of the inner product (8) is a product of analytic functions.
-
-
-
-
32
-
-
33646599293
-
-
note
-
When PT symmetry is broken, we find that the PT norm of the energy eigenstate vanishes.
-
-
-
-
34
-
-
0003663849
-
-
Benjamin, New York
-
R. F. Streater and A. S. Wightman, PCT, Spin & Statistics, and all that (Benjamin, New York, 1964).
-
(1964)
PCT, Spin & Statistics, and All that
-
-
Streater, R.F.1
Wightman, A.S.2
-
35
-
-
36149018678
-
-
T. T. Wu, Phys. Rev. 115, 1390 (1959).
-
(1959)
Phys. Rev.
, vol.115
, pp. 1390
-
-
Wu, T.T.1
-
43
-
-
0035842392
-
-
C. M. Bender, S. Boettcher, H. F. Jones, P. N. Meisinger, and M. Simsek, Phys. Lett. A 291, 197-202 (2001).
-
(2001)
Phys. Lett. A
, vol.291
, pp. 197-202
-
-
Bender, C.M.1
Boettcher, S.2
Jones, H.F.3
Meisinger, P.N.4
Simsek, M.5
-
44
-
-
33646599639
-
-
note
-
2 needed to create two particles at a given time is more than twice the energy M needed to create one particle.
-
-
-
-
46
-
-
33646601912
-
-
note
-
Rotating from θ=0 to θ=-π, we obtain the same Hamiltonian as in (32) but the spectrum is the complex conjugate of the spectrum obtained when we rotate from θ=0 to θ=π.
-
-
-
|