메뉴 건너뛰기




Volumn 24, Issue 2, 2007, Pages 131-148

Spectral analysis of two-signed microarray expression data

Author keywords

Bioinformatics; cDNA; Checkerboard; Clustering; Data mining; Maximum likelihood; Microarray; Reordering; Singular value decomposition; Tumour classification; Unsupervised feature extraction

Indexed keywords

CLASSIFICATION (OF INFORMATION); CLUSTERING ALGORITHMS; GENE EXPRESSION; GRAPH THEORY; MAXIMUM LIKELIHOOD; OPTIMIZATION; SINGULAR VALUE DECOMPOSITION; SPECTRUM ANALYSIS; TUMORS;

EID: 34547767119     PISSN: 14778599     EISSN: 14778602     Source Type: Journal    
DOI: 10.1093/imammb/dql030     Document Type: Article
Times cited : (11)

References (17)
  • 3
    • 0035789644 scopus 로고    scopus 로고
    • Co-clustering documents and words using bipartite spectral graph partitioning
    • (Doheon Lee ed.). New York: ACM Press
    • DHILLON, I. S. (2001) Co-clustering documents and words using bipartite spectral graph partitioning. Proceedings of the Seventh ACM SIGKDD Conference (Doheon Lee ed.). New York: ACM Press, pp. 269-274.
    • (2001) Proceedings of the Seventh ACM SIGKDD Conference , pp. 269-274
    • Dhillon, I.S.1
  • 5
    • 33748746298 scopus 로고    scopus 로고
    • Range-dependent random graphs and their application to modeling large small-world Proteome datasets
    • GRINDROD, P. (2002) Range-dependent random graphs and their application to modeling large small-world Proteome datasets. Phys. Rev. E, 66, 1-7.
    • (2002) Phys. Rev. E , vol.66 , pp. 1-7
    • Grindrod, P.1
  • 6
    • 33646156606 scopus 로고    scopus 로고
    • Review of uses of network and graph theory concepts within proteomics
    • GRINDROD, P. & KIBBLE, M. (2004) Review of uses of network and graph theory concepts within proteomics. Expert Rev. Proteomics, 1, 229-238.
    • (2004) Expert Rev. Proteomics , vol.1 , pp. 229-238
    • Grindrod, P.1    Kibble, M.2
  • 7
    • 25144456056 scopus 로고    scopus 로고
    • Computational cluster validation in post-genomic data analysis
    • HANDL, J., KNOWLES, J. & KELL, D. B. (2005) Computational cluster validation in post-genomic data analysis. Bioinformatics, 21, 3201-3212.
    • (2005) Bioinformatics , vol.21 , pp. 3201-3212
    • Handl, J.1    Knowles, J.2    Kell, D.B.3
  • 8
    • 0043287109 scopus 로고    scopus 로고
    • Unravelling small world networks
    • HIGHAM, D. J. (2003) Unravelling small world networks. J. Comput. Appl. Math., 158, 61-74.
    • (2003) J. Comput. Appl. Math. , vol.158 , pp. 61-74
    • Higham, D.J.1
  • 10
    • 0037399130 scopus 로고    scopus 로고
    • Spectral biclustering of microarray data: coclustering genes and conditions
    • KLUGER, Y., BASRI, R., CHANG, J. & GERSTEIN, M. (2003) Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res., 13, 703-716.
    • (2003) Genome Res. , vol.13 , pp. 703-716
    • Kluger, Y.1    Basri, R.2    Chang, J.3    Gerstein, M.4
  • 12
    • 33747837195 scopus 로고    scopus 로고
    • A lock-and-key model for proteinprotein interactions
    • Advanced access doi:10.1093/bioinformatics/btl338
    • MORRISON, J. L., BREITLING, R., HIGHAM, D. J. & GILBERT, D. R. (2006) A lock-and-key model for proteinprotein interactions. Bioinformatics 22, 2012-2019. Advanced access doi:10.1093/bioinformatics/btl338.
    • (2006) Bioinformatics , vol.22 , pp. 2012-2019
    • Morrison, J.L.1    Breitling, R.2    Higham, D.J.3    Gilbert, D.R.4
  • 13
    • 12344273375 scopus 로고    scopus 로고
    • Modeling interactome: scale-free or geometric?
    • PRZULJ, N., CORNEIL, D. G. & JURISICA, I. (2004) Modeling interactome: scale-free or geometric? Bioinformatics, 20, 3508-3515.
    • (2004) Bioinformatics , vol.20 , pp. 3508-3515
    • Przulj, N.1    Corneil, D.G.2    Jurisica, I.3
  • 15
    • 2542430932 scopus 로고    scopus 로고
    • Singular value decomposition and principal component analysis
    • (D. P. Berrar, W. Dubitzky & M. Granzow). LANL LA-UR-02-4001. Kluwer
    • WALL, M. E., RECHTSTEINER, A. & ROCHA, L. M. (2003) Singular value decomposition and principal component analysis. A Practical Approach to Microarray Data Analysis (D. P. Berrar, W. Dubitzky & M. Granzow). LANL LA-UR-02-4001. Kluwer, pp. 91-109.
    • (2003) A Practical Approach to Microarray Data Analysis , pp. 91-109
    • Wall, M.E.1    Rechtsteiner, A.2    Rocha, L.M.3
  • 16
    • 0000959484 scopus 로고    scopus 로고
    • Cliff: clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts
    • (discovery note)
    • XING, E. P. & KARP, R. P. (2001) Cliff: clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts. Bioinformatics, 1, 1-9 (discovery note).
    • (2001) Bioinformatics , vol.1 , pp. 1-9
    • Xing, E.P.1    Karp, R.P.2
  • 17
    • 0034800371 scopus 로고    scopus 로고
    • Principal component analysis for clustering gene expression data
    • YEUNG, K. Y. & RUZZO, W. L. (2001) Principal component analysis for clustering gene expression data. Bioinformatics, 17, 306-315.
    • (2001) Bioinformatics , vol.17 , pp. 306-315
    • Yeung, K.Y.1    Ruzzo, W.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.