-
2
-
-
33846255862
-
-
Takeuchi, H.; Natsume, K.; Suzuki, S.; Sakata, H. Electron. Lett. 2007, 43, 30-32.
-
(2007)
Electron. Lett
, vol.43
, pp. 30-32
-
-
Takeuchi, H.1
Natsume, K.2
Suzuki, S.3
Sakata, H.4
-
3
-
-
19644401073
-
-
Min, B. K.; Kippenberg, T. J.; Yang, L.; Vahala, K. J.; Kalkman, J.; Polman, A. Phys. Rev. A 2004, 70, 033803.
-
(2004)
Phys. Rev. A
, vol.70
, pp. 033803
-
-
Min, B.K.1
Kippenberg, T.J.2
Yang, L.3
Vahala, K.J.4
Kalkman, J.5
Polman, A.6
-
4
-
-
1642619459
-
-
Martin, A. L.; Armani, D. K.; Yang, L.; Vahala, K. J. Opt. Lett. 2004, 29, 533-535.
-
(2004)
Opt. Lett
, vol.29
, pp. 533-535
-
-
Martin, A.L.1
Armani, D.K.2
Yang, L.3
Vahala, K.J.4
-
5
-
-
0036875283
-
-
Rabiei, P.; Steier, W. H.; Zhang, C.; Dalton, L. R. J. Lightwave Technol. 2002, 20, 1968-1975.
-
(2002)
J. Lightwave Technol
, vol.20
, pp. 1968-1975
-
-
Rabiei, P.1
Steier, W.H.2
Zhang, C.3
Dalton, L.R.4
-
6
-
-
0001366258
-
-
Gorodetsky, M. L.; Savchenkov, A. A.; Ilchenko, V. S. Opt. Lett. 1996, 21, 453-455.
-
(1996)
Opt. Lett
, vol.21
, pp. 453-455
-
-
Gorodetsky, M.L.1
Savchenkov, A.A.2
Ilchenko, V.S.3
-
7
-
-
0037468209
-
-
Armani, D. K.; Kippenberg, T. J.; Spillane, S. M.; Vahala, K. J. Nature 2003, 421, 925-928.
-
(2003)
Nature
, vol.421
, pp. 925-928
-
-
Armani, D.K.1
Kippenberg, T.J.2
Spillane, S.M.3
Vahala, K.J.4
-
8
-
-
0001291165
-
-
Vernooy, D. W.; Ilchenko, V, S.; Mabuchi, H.; Streed, E. W.; Kimble, H. J. Opt. Lett. 1998, 23, 247-249.
-
(1998)
Opt. Lett
, vol.23
, pp. 247-249
-
-
Vernooy, D.W.1
Ilchenko, V.S.2
Mabuchi, H.3
Streed, E.W.4
Kimble, H.J.5
-
9
-
-
0033876850
-
-
Jo, B. H.; Van Lerberghe, L. M.; Motsegood, K. M.; Beebe, D. J. J. Microelectromech. Syst. 2000, 9, 76-81.
-
(2000)
J. Microelectromech. Syst
, vol.9
, pp. 76-81
-
-
Jo, B.H.1
Van Lerberghe, L.M.2
Motsegood, K.M.3
Beebe, D.J.4
-
10
-
-
8944257381
-
-
Xia, Y. N.; Kim, E.; Zhao, X. M.; Rogers, J. A.; Prentiss, M.; Whitesides, G. M. Science 1996, 273, 347-349.
-
(1996)
Science
, vol.273
, pp. 347-349
-
-
Xia, Y.N.1
Kim, E.2
Zhao, X.M.3
Rogers, J.A.4
Prentiss, M.5
Whitesides, G.M.6
-
11
-
-
0034227547
-
-
Cai, M.; Painter, O.; Vahala, K. J. Phys. Rev. Lett. 2000, 85, 74-77.
-
(2000)
Phys. Rev. Lett
, vol.85
, pp. 74-77
-
-
Cai, M.1
Painter, O.2
Vahala, K.J.3
-
12
-
-
3442883790
-
-
Spillane, S. M.; Kippenberg, T. J.; Painter, O. J.; Vahala, K. J. Phys. Rev. Lett. 2003, 91, 043902.
-
(2003)
J. Phys. Rev. Lett
, vol.91
, pp. 043902
-
-
Spillane, S.M.1
Kippenberg, T.J.2
Painter, O.J.3
Vahala, K.4
-
13
-
-
33644891357
-
-
Poon, J. K. S.; Zhu, L.; DeRose, G. A.; Yariv, A. Opt. Lett. 2006, 31, 456-458.
-
(2006)
Opt. Lett
, vol.31
, pp. 456-458
-
-
Poon, J.K.S.1
Zhu, L.2
DeRose, G.A.3
Yariv, A.4
-
14
-
-
0036883172
-
-
Chao, C. Y.; Guo, L. J. J. Vac. Sci. Technol., B 2002, 20, 2862-2866.
-
(2002)
J. Vac. Sci. Technol., B
, vol.20
, pp. 2862-2866
-
-
Chao, C.Y.1
Guo, L.J.2
-
15
-
-
0042879734
-
-
Yang, L.; Armani, D. K.; Vahala, K. J. Appl. Phys. Lett. 2003, 83, 825-826.
-
(2003)
Appl. Phys. Lett
, vol.83
, pp. 825-826
-
-
Yang, L.1
Armani, D.K.2
Vahala, K.J.3
-
16
-
-
33750714414
-
-
Li, Z. Y.; Zhang, Z. Y.; Scherer, A.; Psaltis, D. Opt. Express 2006, 14 (22), 10494-10499.
-
(2006)
Opt. Express
, vol.14
, Issue.22
, pp. 10494-10499
-
-
Li, Z.Y.1
Zhang, Z.Y.2
Scherer, A.3
Psaltis, D.4
-
17
-
-
84858101866
-
-
In prior work, it has been shown that the smoothness of the replicated resonator surface is sufficient to enable material-loss-dominated Q factors when the intrinsic Q (Q0) is in excess of 1 million. Therefore, in order to solve for the material absorption, the intrinsic Q must be determined. The intrinsic modal line width (and Q0) was computed using a simple coupling model to analyze the loaded transmission spectra. The material absorption was then calculated using the relation α, 2π.n eff/λQ where α is the material absorption, n eff is the effective refractive index of the material determined from the free-spectral-range, and λ is the wavelength of the resonance. The effective refractive index (neff) of the microresonator was determined from the free-spectral range. The principal transmission minima were identified by performing a broad-band transmission spectrum measurement; the exact location of ea
-
eff = 1.48; however, in the near-IR, the effective refractive indices of the two polymers changed to 1.33 and 1.38 respectively.
-
-
-
|