-
4
-
-
33845753121
-
-
M. Brynda, R. Herber, P. B. Hitchcock, M. F. Lappert, I. Nowik, P. P. Power, A. V. Protchenko, A. Ruzicka, J. Steiner, Angew. Chem. 2006, 118, 4439;
-
(2006)
Angew. Chem
, vol.118
, pp. 4439
-
-
Brynda, M.1
Herber, R.2
Hitchcock, P.B.3
Lappert, M.F.4
Nowik, I.5
Power, P.P.6
Protchenko, A.V.7
Ruzicka, A.8
Steiner, J.9
-
5
-
-
33746307353
-
-
Angew. Chem. Int. Ed. 2006, 45, 4333.
-
(2006)
Chem. Int. Ed
, vol.45
, pp. 4333
-
-
Angew1
-
6
-
-
34447508806
-
-
The first example of a metalloid Group 14 cluster compound was synthesized in 1999: N. Wiberg, H.-W. Lerner, S. Wagner, H. Nöth, T. Seifert, Z. Naturforsch. B 1999, 54, 877.
-
The first example of a metalloid Group 14 cluster compound was synthesized in 1999: N. Wiberg, H.-W. Lerner, S. Wagner, H. Nöth, T. Seifert, Z. Naturforsch. B 1999, 54, 877.
-
-
-
-
12
-
-
0035915146
-
-
Angew. Chem. Int. Ed. 2001, 40, 4161.
-
(2001)
Chem. Int. Ed
, vol.40
, pp. 4161
-
-
Angew1
-
15
-
-
0001732965
-
-
C. Downie, Z. Tang, A. M. Guloy, Angew. Chem. 2000, 112, 346;
-
(2000)
Angew. Chem
, vol.112
, pp. 346
-
-
Downie, C.1
Tang, Z.2
Guloy, A.M.3
-
16
-
-
34447540739
-
-
Angew. Chem. Int. Ed. 2000, 39, 337.
-
(2000)
Chem. Int. Ed
, vol.39
, pp. 337
-
-
Angew1
-
18
-
-
21244477913
-
-
Angew. Chem. Int. Ed. 2005, 44, 4026.
-
(2005)
Chem. Int. Ed
, vol.44
, pp. 4026
-
-
Angew1
-
19
-
-
34447507045
-
-
T. F. Fässler, A. Spiekermann, S. D. Hoffmann, F. Kraus, Angew. Chem. 2007, 119, 1663;
-
(2007)
Angew. Chem
, vol.119
, pp. 1663
-
-
Fässler, T.F.1
Spiekermann, A.2
Hoffmann, S.D.3
Kraus, F.4
-
20
-
-
34347257440
-
-
Angew. Chem. Int. Ed. 2007, 46, 1638.
-
(2007)
Chem. Int. Ed
, vol.46
, pp. 1638
-
-
Angew1
-
21
-
-
34447537305
-
-
unpublished results
-
A. Spiekermann, S. D. Hoffmann, T. F. Fässler, I. Krossing, U. Preiss, unpublished results.
-
-
-
Spiekermann, A.1
Hoffmann, S.D.2
Fässler, T.F.3
Krossing, I.4
Preiss, U.5
-
23
-
-
0038112103
-
-
Angew. Chem. Int. Ed. 2003, 42, 2624.
-
(2003)
Chem. Int. Ed
, vol.42
, pp. 2624
-
-
Angew1
-
24
-
-
34447516298
-
-
The steric demand of the Si(SiMe3)3 groups is so large in this case that the methyl groups of the ligands of the different {Ge9} units are in contact, leading to a bending of the ligands. Thus, the Ge-Si bond is not located inside the plane of ligand-bound germanium atoms, but is directed away from the gold atom by 7.1°. It could be shown that this bending is mainly due to the steric demand of the bulky ligands by quantum chemical calculations on the model compounds [AuGe18H 6, 4′) and [AuGe18(SiMe 3)6, 4″, in which no steric effects are present and a bending angle of only 1.4° has been calculated
-
- (4″), in which no steric effects are present and a bending angle of only 1.4° has been calculated.
-
-
-
-
27
-
-
4243402296
-
-
Quantum chemical calculations were carried out with the RI-DFT version of the Turbomole program package, by employing the Becke-Perdew 86 functional. The basis sets were of SVP quality. The electronic structure was analyzed with the Ahlrichs-Heinzmann population analysis based on occupation numbers. Turbomole: O. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346;
-
Quantum chemical calculations were carried out with the RI-DFT version of the Turbomole program package, by employing the Becke-Perdew 86 functional. The basis sets were of SVP quality. The electronic structure was analyzed with the Ahlrichs-Heinzmann population analysis based on occupation numbers. Turbomole: O. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346;
-
-
-
-
28
-
-
5944261746
-
-
BP-86 functional: J. P. Perdew, Phys. Rev. B 1986, 33, 8822;
-
BP-86 functional: J. P. Perdew, Phys. Rev. B 1986, 33, 8822;
-
-
-
-
30
-
-
22944484208
-
-
RI-DFT: K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 240, 283;
-
(1995)
Chem. Phys. Lett
, vol.240
, pp. 283
-
-
RI-DFT, K.1
Eichkorn, O.2
Treutler, H.3
Öhm, M.4
-
32
-
-
36849109127
-
-
Ahlrichs-Heinzmann population analysis: E. R. Davidson, J. Chem. Phys. 1967, 46, 3320;
-
Ahlrichs-Heinzmann population analysis: E. R. Davidson, J. Chem. Phys. 1967, 46, 3320;
-
-
-
-
36
-
-
34447502871
-
-
2) is 1.04.
-
2) is 1.04.
-
-
-
-
37
-
-
0025780005
-
-
SORI-CAD: sustained off resonance irradiation collision activated dissociation: J. Gauthier, T. Trautmann, D. Jacobson, Anal. Chim. Acta 1991, 246, 211.
-
SORI-CAD: sustained off resonance irradiation collision activated dissociation: J. Gauthier, T. Trautmann, D. Jacobson, Anal. Chim. Acta 1991, 246, 211.
-
-
-
-
38
-
-
33748423973
-
-
K. Koch, A. Schnepf, H. Schnöckel, Z. Anorg. Allg. Chem. 2006, 632, 1710.
-
(2006)
Z. Anorg. Allg. Chem
, vol.632
, pp. 1710
-
-
Koch, K.1
Schnepf, A.2
Schnöckel, H.3
-
39
-
-
34447519708
-
-
The spectral data can be found in the Supporting Information
-
The spectral data can be found in the Supporting Information.
-
-
-
-
40
-
-
34447537304
-
-
If 4 is considered as consisting of a Au- center and two neutral {Ge9R3} units, every {Ge9R 3} unit exhibits 21 cluster bonding electrons. This perception is in accord with the results of a population analysis,[17] in which the gold atom possesses the maximum negative charge. According to Wade's rules, a cluster of nine atoms with 21 bonding electrons would range between a closo (2n, n, 20) and a nido (2n, 4, 22) cluster. As the arrangement of the nine germanium atoms inside the {Ge 9R3} unit of 4 can be considered neither as closo (tricapped trigonal prism) nor as nido monocapped square antiprism, a description of 4 with Wade's rules seems not to be reasonable. This observation is in contrast to the results with the Zintl anions, for which the structures often fit Wade's rules;[11] thus, there is a significant di
-
[11] thus, there is a significant difference between metalloid cluster compounds and Zintl anions.
-
-
-
-
42
-
-
34250010588
-
-
Angew. Chem. Int. Ed. 2007, 46, 1028.
-
(2007)
Chem. Int. Ed
, vol.46
, pp. 1028
-
-
Angew1
-
43
-
-
34447528261
-
-
G. M. Sheldrick, SHELXTL, Version 5.1, Bruker AXS, 1998
-
G. M. Sheldrick, SHELXTL, Version 5.1, Bruker AXS, 1998.
-
-
-
|