-
2
-
-
0032549783
-
-
R. N. Zare, Science 279, 1875 (1998).
-
(1998)
Science
, vol.279
, pp. 1875
-
-
Zare, R.N.1
-
4
-
-
33749486245
-
-
K. Liu, J. Chem. Phys. 125, 132307 (2006).
-
(2006)
J. Chem. Phys
, vol.125
, pp. 132307
-
-
Liu, K.1
-
6
-
-
0037157642
-
-
S. Yoon, S. Henton, A. N. Zivkovic, F. F. Crim, J. Chem. Phys. 116, 10744 (2002).
-
(2002)
J. Chem. Phys
, vol.116
, pp. 10744
-
-
Yoon, S.1
Henton, S.2
Zivkovic, A.N.3
Crim, F.F.4
-
8
-
-
0345529911
-
-
S. Yoon, R. J. Holiday, E. L. Sibert III, F. F. Crim, J. Chem. Phys. 119, 9568 (2003).
-
(2003)
J. Chem. Phys
, vol.119
, pp. 9568
-
-
Yoon, S.1
Holiday, R.J.2
Sibert III, E.L.3
Crim, F.F.4
-
9
-
-
33749462922
-
-
R. J. Holiday, C. H. Kwon, C. J. Annesley, F. F. Crim, J. Chem. Phys. 125, 133101 (2006).
-
(2006)
J. Chem. Phys
, vol.125
, pp. 133101
-
-
Holiday, R.J.1
Kwon, C.H.2
Annesley, C.J.3
Crim, F.F.4
-
10
-
-
33747291168
-
-
W. R. Simpson, T. P. Rakitzis, S. A. Kandel, T. Lev-On, R. N. Zare, J. Phys. Chem. 100, 7938 (1996).
-
(1996)
J. Phys. Chem
, vol.100
, pp. 7938
-
-
Simpson, W.R.1
Rakitzis, T.P.2
Kandel, S.A.3
Lev-On, T.4
Zare, R.N.5
-
11
-
-
36448999796
-
-
W. R. Simpson, T. P. Rakitzis, S. A. Kandel, A. J. Orr-Ewing, R. N. Zare, J. Chem. Phys. 103, 7313 (1995).
-
(1995)
J. Chem. Phys
, vol.103
, pp. 7313
-
-
Simpson, W.R.1
Rakitzis, T.P.2
Kandel, S.A.3
Orr-Ewing, A.J.4
Zare, R.N.5
-
13
-
-
0035396181
-
-
Z. H. Kim, A. J. Alexander, H. A. Bechtel, R. N. Zare, J. Chem. Phys. 115, 179 (2001).
-
(2001)
J. Chem. Phys
, vol.115
, pp. 179
-
-
Kim, Z.H.1
Alexander, A.J.2
Bechtel, H.A.3
Zare, R.N.4
-
15
-
-
0842311623
-
-
H. A. Bechtel, Z. H. Kim, J. P. Camden, R. N. Zare, J. Chem. Phys. 120, 791 (2004).
-
(2004)
J. Chem. Phys
, vol.120
, pp. 791
-
-
Bechtel, H.A.1
Kim, Z.H.2
Camden, J.P.3
Zare, R.N.4
-
16
-
-
1842782621
-
-
H. A. Bechtel, J. P. Camden, D. J. A. Brown, R. N. Zare, J. Chem. Phys. 120, 5096 (2004).
-
(2004)
J. Chem. Phys
, vol.120
, pp. 5096
-
-
Bechtel, H.A.1
Camden, J.P.2
Brown, D.J.A.3
Zare, R.N.4
-
18
-
-
6044275865
-
-
J. Zhou, J. J. Lin, B. Zhang, K. Liu, J. Phys. Chem. A 10B, 7832 (2004).
-
(2004)
J. Phys. Chem. A
, vol.10 B
, pp. 7832
-
-
Zhou, J.1
Lin, J.J.2
Zhang, B.3
Liu, K.4
-
20
-
-
33748281593
-
-
J. Sanson, J. C. Corchado, C. Rangel, J. Espinosa-Garcia, J. Phys. Chem. A 110, 9568 (2006).
-
(2006)
J. Phys. Chem. A
, vol.110
, pp. 9568
-
-
Sanson, J.1
Corchado, J.C.2
Rangel, C.3
Espinosa-Garcia, J.4
-
21
-
-
0037633159
-
-
J. J. Lin, J. Zhou, W. Shiu, K. Liu, Rev. Sci. Instrum. 74, 2495 (2003).
-
(2003)
Rev. Sci. Instrum
, vol.74
, pp. 2495
-
-
Lin, J.J.1
Zhou, J.2
Shiu, W.3
Liu, K.4
-
22
-
-
0037655994
-
-
J. J. Lin, J. Zhou, W. Shiu, K. Liu, Science 300, 966 (2003).
-
(2003)
Science
, vol.300
, pp. 966
-
-
Lin, J.J.1
Zhou, J.2
Shiu, W.3
Liu, K.4
-
23
-
-
34250799295
-
-
1/2), the discussion of which is beyond the scope of this report.
-
1/2), the discussion of which is beyond the scope of this report.
-
-
-
-
24
-
-
34250851529
-
-
c of about 3.5 kcal/mol with a comparable energy spread. Averaging the reactivity ratio shown in Fig. 2C over this energy spread will then yield an enhancement factor that is substantially higher than its actual ratio. Similarly, the HCl(v′ = 1) branching fraction from the photoloc experiment will be somewhat smaller because of the threshold effects (Fig. 3).
-
c of about 3.5 kcal/mol with a comparable energy spread. Averaging the reactivity ratio shown in Fig. 2C over this energy spread will then yield an enhancement factor that is substantially higher than its actual ratio. Similarly, the HCl(v′ = 1) branching fraction from the photoloc experiment will be somewhat smaller because of the threshold effects (Fig. 3).
-
-
-
-
25
-
-
34250850379
-
-
One issue may cloud the present comparison: Only CD3(v, 0) products were probed in this work. Although these results remain a reasonable approximation to total reactivity for the ground-state reaction, the same may not hold for the stretch-excited one. A recent, preliminary investigation of the latter reaction at Ec, 8.1 kcal/mol indicated that the two pairs (0, 00)s and (1, 0 0)s probed in this work account for about two-thirds of the total product distribution, with the remainder distributed among the umbrella-excited CD3 products. Taking this factor into account, the stretching enhancement factor at 8.1 kcal/mol shown in Fig. 2E will then rise from ∼0.95 to 1.4, which is still a rather modest preferential enhancement and almost equivalent to the bending enhancement factor
-
3 products. Taking this factor into account, the stretching enhancement factor at 8.1 kcal/mol shown in Fig. 2E will then rise from ∼0.95 to 1.4, which is still a rather modest preferential enhancement and almost equivalent to the bending enhancement factor.
-
-
-
-
29
-
-
23844497187
-
-
J. J. Zhou, B. Zhang, J. J. Lin, K. Liu, Mol. Phys. 103, 1757 (2005).
-
(2005)
Mol. Phys
, vol.103
, pp. 1757
-
-
Zhou, J.J.1
Zhang, B.2
Lin, J.J.3
Liu, K.4
-
31
-
-
34250814669
-
-
A tiny fraction, ∼2, Fig. 3, does reach the excited stretching curve and gets temporarily trapped in the dynamic well, forming a transient complex that leads to the (1, 00)g product pair. Its I(θ)-θ-Ec pattern displays both a direct-scattering ridge and sharp forward and backward peaking, characteristic features for a short-lived complex reaction mechanism (4, 30, Thus, the formation of the (1, 00)g pair involves contributions from both pathways
-
g pair involves contributions from both pathways.
-
-
-
-
35
-
-
34250893985
-
-
The National Science Council of Taiwan supported this work under grant no. 95-2119-M-001-002.
-
The National Science Council of Taiwan supported this work under grant no. 95-2119-M-001-002.
-
-
-
|