메뉴 건너뛰기




Volumn 27, Issue 1, 2007, Pages 29-37

A boosting approach for corporate failure prediction

Author keywords

Boosting; Corporate failure prediction; Ensemble classifiers

Indexed keywords

ADMINISTRATIVE DATA PROCESSING; CLASSIFICATION (OF INFORMATION); FAILURE ANALYSIS; INDUSTRIAL ECONOMICS; LEARNING SYSTEMS; MANAGEMENT SCIENCE; PROBLEM SOLVING;

EID: 34250748375     PISSN: 0924669X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10489-006-0028-9     Document Type: Article
Times cited : (17)

References (26)
  • 2
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119-139
    • (1997) J Comput Syst Sci , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123-140
    • (1996) Mach Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 84944837333 scopus 로고
    • Introducing recursive partitioning for financial classification: The case of financial distress
    • Frydman H, Altman E, Kao D (1985) Introducing recursive partitioning for financial classification: the case of financial distress. J Finance 269-291
    • (1985) J Finance , pp. 269-291
    • Frydman, H.1    Altman, E.2    Kao, D.3
  • 5
    • 26844494532 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 38(2):391-293
    • (2000) Ann Stat , vol.38 , Issue.2 , pp. 391-293
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 6
    • 33749418783 scopus 로고    scopus 로고
    • A comparison of ensemble creation techniques
    • Roli F, Kittler J, Windeatt T (eds) Multiple classifier systems, of, Springer, Cagliari, Italy, pp
    • Banfield RE, Hall LO, Bowyer KW, Bhadoria D, Kegelmeyer WP, Eschrich S (2004) A comparison of ensemble creation techniques. In: Roli F, Kittler J, Windeatt T (eds) Multiple classifier systems, vol. 3077 of Lecture notes in computer science. Springer, Cagliari, Italy, pp 223-232
    • (2004) Lecture notes in computer science , vol.3077 , pp. 223-232
    • Banfield, R.E.1    Hall, L.O.2    Bowyer, K.W.3    Bhadoria, D.4    Kegelmeyer, W.P.5    Eschrich, S.6
  • 7
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Kittler J, Roli F (eds) Multiple classifier systems, of, Springer, Cagliari, Italy, pp
    • Dietterich TG (2000) Ensemble methods in machine learning. In: Kittler J, Roli F (eds) Multiple classifier systems, vol 1857 of Lecture notes in computer science. Springer, Cagliari, Italy, pp 1-15
    • (2000) Lecture notes in computer science , vol.1857 , pp. 1-15
    • Dietterich, T.G.1
  • 8
    • 0034830461 scopus 로고    scopus 로고
    • Decision templates for multiple classifier fusion: And experimental comparison
    • Kuncheva LI, Bezdek JC, Duin RPW (2001) Decision templates for multiple classifier fusion: and experimental comparison. Pattern Recog 34:299-314
    • (2001) Pattern Recog , vol.34 , pp. 299-314
    • Kuncheva, L.I.1    Bezdek, J.C.2    Duin, R.P.W.3
  • 9
    • 84867038166 scopus 로고    scopus 로고
    • Classifier combinations: Implementations and theoretical issues
    • Kittler J, Roli F (eds) Multiple classifier systems, of, Springer, Cagliari, Italy, pp
    • Lam L (2000) Classifier combinations: implementations and theoretical issues. In: Kittler J, Roli F (eds) Multiple classifier systems, vol 1857 of Lecture notes in computer science. Springer, Cagliari, Italy, pp 78-86
    • (2000) Lecture notes in computer science , vol.1857 , pp. 78-86
    • Lam, L.1
  • 10
    • 84865801454 scopus 로고    scopus 로고
    • Ensembles of learning machines
    • Marinaro M, Tagliaferri R (eds) Neural nets WIRN Vietri-02, of, Springer-Verlag, Heidelberg, Germany, pp
    • Valentini G, Masulli F (2002) Ensembles of learning machines. In: Marinaro M, Tagliaferri R (eds) Neural nets WIRN Vietri-02, vol. 2486 of Lecture notes in computer science. Springer-Verlag, Heidelberg, Germany, pp 3-19
    • (2002) Lecture notes in computer science , vol.2486 , pp. 3-19
    • Valentini, G.1    Masulli, F.2
  • 11
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman L (1998) Arcing classifiers. Ann Statist 26(3):801-849
    • (1998) Ann Statist , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 12
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithm: Bagging, boosting and variants
    • Bauer E, Kohavi R (1999) An empirical comparison of voting classification algorithm: bagging, boosting and variants. Mach Learn 36:105-142
    • (1999) Mach Learn , vol.36 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 16
    • 34250716652 scopus 로고    scopus 로고
    • Beaver WH (1966) Financial ratios as predictors of failure. Empirical research in accounting. Selected studies. Supplement to 4 of Journal of Accounting Research, pp 71-111
    • Beaver WH (1966) Financial ratios as predictors of failure. Empirical research in accounting. Selected studies. Supplement to vol. 4 of Journal of Accounting Research, pp 71-111
  • 17
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
    • Altman EI (1968) Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. J Finance 23(4):589-609
    • (1968) J Finance , vol.23 , Issue.4 , pp. 589-609
    • Altman, E.I.1
  • 18
    • 0000666375 scopus 로고
    • Financial ratios and the probabilistic prediction of bankruptcy
    • Olshon JA (1980) Financial ratios and the probabilistic prediction of bankruptcy. J Account Res 18(1):5-12
    • (1980) J Account Res , vol.18 , Issue.1 , pp. 5-12
    • Olshon, J.A.1
  • 19
    • 0001953906 scopus 로고
    • Methodological issues related to the estimation of financial distress prediction models
    • Zmijewski M (1984) Methodological issues related to the estimation of financial distress prediction models. J Account Res 22:59-86
    • (1984) J Account Res , vol.22 , pp. 59-86
    • Zmijewski, M.1
  • 20
    • 0028444978 scopus 로고
    • Bankruptcy prediction using neural network
    • Wilson RL, Sharda R (1994) Bankruptcy prediction using neural network. Decis Support Syst 11:545-557
    • (1994) Decis Support Syst , vol.11 , pp. 545-557
    • Wilson, R.L.1    Sharda, R.2
  • 21
    • 0042857342 scopus 로고    scopus 로고
    • Comparative analysis of failure prediction methods: The Finish case
    • Laitinen T, Kankaanpaa M (1999) Comparative analysis of failure prediction methods: the Finish case. Eur Account Rev 8(1): 67-92
    • (1999) Eur Account Rev , vol.8 , Issue.1 , pp. 67-92
    • Laitinen, T.1    Kankaanpaa, M.2
  • 22
    • 1842607847 scopus 로고    scopus 로고
    • R Development Core Team , R foundation for statistical computing, Viena
    • R Development Core Team (2004) R: a language and environment for statistical computing. R foundation for statistical computing, Viena. http://www.R-project.org
    • (2004) R: A language and environment for statistical computing
  • 24
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study. J Artif Intell Res 11:169-198
    • (1999) J Artif Intell Res , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 25
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Freund Y, Schapire RE, Bartlett P, Lee WS (1998) Boosting the margin: a new explanation for the effectiveness of voting methods. Ann Stat 26(5):1651-1686
    • (1998) Ann Stat , vol.26 , Issue.5 , pp. 1651-1686
    • Freund, Y.1    Schapire, R.E.2    Bartlett, P.3    Lee, W.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.