-
1
-
-
0003278032
-
Inferring parameters and structure of latent variable models by variational bayes
-
San Francisco, USA, Morgan Kaufmann
-
H. Attias. Inferring parameters and structure of latent variable models by variational bayes. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pages 21-30, San Francisco, USA, 1999. Morgan Kaufmann.
-
(1999)
Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence
, pp. 21-30
-
-
Attias, H.1
-
2
-
-
84898964031
-
A variational bayesian framework for graphical models
-
Cambridge, MA, USA, MIT Press
-
H. Attias. A variational bayesian framework for graphical models. In Proceedings of Neural Information Processing Systems 12, Cambridge, MA, USA, 2000. MIT Press.
-
(2000)
Proceedings of Neural Information Processing Systems 12
-
-
Attias, H.1
-
7
-
-
0003922190
-
-
Wiley-Interscience, New York, USA, second edition
-
R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley-Interscience, New York, USA, second edition, 2001.
-
(2001)
Pattern Classification
-
-
Duda, R.1
Hart, P.2
Stork, D.3
-
9
-
-
0023492118
-
Relations between the statistics of natural images and the response properties of cortical cells
-
D. J. Field. Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America, 4(12):2379-2394, 1987.
-
(1987)
Journal of the Optical Society of America
, vol.4
, Issue.12
, pp. 2379-2394
-
-
Field, D.J.1
-
10
-
-
0042685161
-
Bayesian parameter estimation via variational methods
-
T. S. Jaakkola and M. I. Jordan. Bayesian parameter estimation via variational methods. Statistics and Computing, 10:25-37, 2000.
-
(2000)
Statistics and Computing
, vol.10
, pp. 25-37
-
-
Jaakkola, T.S.1
Jordan, M.I.2
-
11
-
-
0033225865
-
An introduction to variational methods for graphical models
-
M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2): 183-233, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.3
Saul, L.K.4
-
12
-
-
0004272772
-
-
Cambridge University Press, Cambridge, UK
-
D. J. C. Mackay. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge, UK, 2003.
-
(2003)
Information Theory, Inference, and Learning Algorithms
-
-
Mackay, D.J.C.1
-
13
-
-
0003931083
-
Using lower bounds to approximate integrals
-
notes available at
-
T. P. Minka. Using lower bounds to approximate integrals. Informal notes available at http://www.stat.cmu.edu/minka/papers/learning.html, 2001.
-
(2001)
Informal
-
-
Minka, T.P.1
-
15
-
-
0001820920
-
X-means: Extending K-means with efficient estimation of the number of clusters
-
Morgan Kaufmann, San Francisco, CA
-
D. Pelleg and A. Moore. X-means: Extending K-means with efficient estimation of the number of clusters. In Proc. 17th International Conf. on Machine Learning, pages 727-734. Morgan Kaufmann, San Francisco, CA, 2000.
-
(2000)
Proc. 17th International Conf. on Machine Learning
, pp. 727-734
-
-
Pelleg, D.1
Moore, A.2
-
16
-
-
0032205609
-
Bayesian approaches to Gaussian mixture modeling
-
November
-
S. J. Roberts, D. Husmeier, I. Rezek, and W. Penny. Bayesian approaches to Gaussian mixture modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), November 1998.
-
(1998)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.20
, Issue.11
-
-
Roberts, S.J.1
Husmeier, D.2
Rezek, I.3
Penny, W.4
-
17
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:461-464, 1978.
-
(1978)
The Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
18
-
-
33748773855
-
Learning Bayesian belief networks based on the MDL principle: An efficient algorithm using the branch and bound technique
-
December
-
J. Suzuki. Learning Bayesian belief networks based on the MDL principle: An efficient algorithm using the branch and bound technique. IEICE Transactions on Information and Systems, E81-D(12), December 1998.
-
(1998)
IEICE Transactions on Information and Systems
, vol.E81-D
, Issue.12
-
-
Suzuki, J.1
-
19
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality redution
-
J. Tenenbaum, V. DeSilva, and J. C. Langford. A global geometric framework for nonlinear dimensionality redution. Science, 290:2319-2323, 2000.
-
(2000)
Science
, vol.290
, pp. 2319-2323
-
-
Tenenbaum, J.1
DeSilva, V.2
Langford, J.C.3
-
22
-
-
59049094938
-
Fast Parameter Estimation for General Bayesian Filters in Robotics
-
B. Upcroft, S. Kumar, M. Ridley, S. Ong, and H. Durrant-Whyte. Fast Parameter Estimation for General Bayesian Filters in Robotics. In Proceedings of Australian Conf. on Robotics and Automation, 2004.
-
(2004)
Proceedings of Australian Conf. on Robotics and Automation
-
-
Upcroft, B.1
Kumar, S.2
Ridley, M.3
Ong, S.4
Durrant-Whyte, H.5
|