메뉴 건너뛰기




Volumn , Issue , 2006, Pages 5866-5871

Recognising and segmenting objects in natural environments

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; BAYESIAN NETWORKS; COMPUTATION THEORY; PARAMETER ESTIMATION;

EID: 34250684950     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IROS.2006.282463     Document Type: Conference Paper
Times cited : (3)

References (24)
  • 1
    • 0003278032 scopus 로고    scopus 로고
    • Inferring parameters and structure of latent variable models by variational bayes
    • San Francisco, USA, Morgan Kaufmann
    • H. Attias. Inferring parameters and structure of latent variable models by variational bayes. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pages 21-30, San Francisco, USA, 1999. Morgan Kaufmann.
    • (1999) Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence , pp. 21-30
    • Attias, H.1
  • 2
    • 84898964031 scopus 로고    scopus 로고
    • A variational bayesian framework for graphical models
    • Cambridge, MA, USA, MIT Press
    • H. Attias. A variational bayesian framework for graphical models. In Proceedings of Neural Information Processing Systems 12, Cambridge, MA, USA, 2000. MIT Press.
    • (2000) Proceedings of Neural Information Processing Systems 12
    • Attias, H.1
  • 9
    • 0023492118 scopus 로고
    • Relations between the statistics of natural images and the response properties of cortical cells
    • D. J. Field. Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America, 4(12):2379-2394, 1987.
    • (1987) Journal of the Optical Society of America , vol.4 , Issue.12 , pp. 2379-2394
    • Field, D.J.1
  • 10
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian parameter estimation via variational methods
    • T. S. Jaakkola and M. I. Jordan. Bayesian parameter estimation via variational methods. Statistics and Computing, 10:25-37, 2000.
    • (2000) Statistics and Computing , vol.10 , pp. 25-37
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 11
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2): 183-233, 1999.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.K.4
  • 13
    • 0003931083 scopus 로고    scopus 로고
    • Using lower bounds to approximate integrals
    • notes available at
    • T. P. Minka. Using lower bounds to approximate integrals. Informal notes available at http://www.stat.cmu.edu/minka/papers/learning.html, 2001.
    • (2001) Informal
    • Minka, T.P.1
  • 15
    • 0001820920 scopus 로고    scopus 로고
    • X-means: Extending K-means with efficient estimation of the number of clusters
    • Morgan Kaufmann, San Francisco, CA
    • D. Pelleg and A. Moore. X-means: Extending K-means with efficient estimation of the number of clusters. In Proc. 17th International Conf. on Machine Learning, pages 727-734. Morgan Kaufmann, San Francisco, CA, 2000.
    • (2000) Proc. 17th International Conf. on Machine Learning , pp. 727-734
    • Pelleg, D.1    Moore, A.2
  • 17
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:461-464, 1978.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 18
    • 33748773855 scopus 로고    scopus 로고
    • Learning Bayesian belief networks based on the MDL principle: An efficient algorithm using the branch and bound technique
    • December
    • J. Suzuki. Learning Bayesian belief networks based on the MDL principle: An efficient algorithm using the branch and bound technique. IEICE Transactions on Information and Systems, E81-D(12), December 1998.
    • (1998) IEICE Transactions on Information and Systems , vol.E81-D , Issue.12
    • Suzuki, J.1
  • 19
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality redution
    • J. Tenenbaum, V. DeSilva, and J. C. Langford. A global geometric framework for nonlinear dimensionality redution. Science, 290:2319-2323, 2000.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.1    DeSilva, V.2    Langford, J.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.