메뉴 건너뛰기




Volumn 3, Issue , 2004, Pages 1594-1598

Learning Bayesian networks structures based on extending Evolutionary programming

Author keywords

Bayesian networks; Evolutionary programming; Genetic algorithms; Minimum description length principle; Niche

Indexed keywords

COMBINATORIAL MATHEMATICS; COMPUTATIONAL METHODS; CONVERGENCE OF NUMERICAL METHODS; FUNCTIONS; LEARNING SYSTEMS; OPTIMIZATION;

EID: 6344267195     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (11)
  • 1
    • 0003021797 scopus 로고
    • A construction of Bayesian networks from databases based on a MDL scheme
    • San Mateo, CA: Morgan Kaufmann
    • J Suzuki. "A construction of Bayesian networks from databases based on a MDL scheme", Proc of the 9th Confon Uncertainty in Artificial Intelligence. San Mateo, CA: Morgan Kaufmann, pp. 266-273, 1993.
    • (1993) Proc of the 9th Confon Uncertainty in Artificial Intelligence , pp. 266-273
    • Suzuki, J.1
  • 2
    • 6344288516 scopus 로고
    • Learning conditional independence relations from a probabilistic model
    • Department of Computer Science, University of Regina, CA
    • Y Xiang, S K M Wong. "Learning conditional independence relations from a probabilistic model", Department of Computer Science, University of Regina, CA, Tech Rep: CS-94-03, 1994.
    • (1994) Tech Rep , vol.CS-94-03
    • Xiang, Y.1    Wong, S.K.M.2
  • 3
    • 34249761849 scopus 로고
    • Learning Bayesian network: The combination of knowledge and statistica data
    • D Heckerman. "Learning Bayesian network: The combination of knowledge and statistica data", Machine Learning, Vol. 20, No. 2, pp. 197-243, 1995.
    • (1995) Machine Learning , vol.20 , Issue.2 , pp. 197-243
    • Heckerman, D.1
  • 4
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: An efficient algorithm based on information theory
    • Cheng J, Greiner R, Kelly J. "Learning Bayesian networks from data: An efficient algorithm based on information theory", Artificial Intelligence. Vol.137, No.1-2, pp. 43-90, 2002.
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3
  • 5
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: An algorithm based on the MDL principle
    • Lam, W. and Bacchus, F., "Learning Bayesian belief networks: An algorithm based on the MDL principle", Computational Intelligence, Vol 10, No.4, 1994.
    • (1994) Computational Intelligence , vol.10 , Issue.4
    • Lam, W.1    Bacchus, F.2
  • 6
  • 7
    • 0035428596 scopus 로고    scopus 로고
    • Research on learning Bayesian network structure based on genetic algorithm
    • Liu Da-You, Wang Fei et al. "Research on learning Bayesian network structure based on genetic algorithm", Journal of Computer Research and Development, Vol. 38, No.8, pp: 916-922, 2001.
    • (2001) Journal of Computer Research and Development , vol.38 , Issue.8 , pp. 916-922
    • Liu, D.-Y.1    Wang, F.2
  • 8
    • 0028338155 scopus 로고
    • An introduction to simulated evolutionary optimization
    • D.B. Fogel, "An Introduction to Simulated Evolutionary Optimization", IEEE Trans. Neural Network, vol. 5, pp. 3-14, 1994.
    • (1994) IEEE Trans. Neural Network , vol.5 , pp. 3-14
    • Fogel, D.B.1
  • 11
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: An algorithm based on the MDL principle
    • W. Lam and F. Bacchus. "Learning Bayesian belief networks: an algorithm based on the MDL principle", Computational Intelligence, Vol.10, No.4, pp: 269-293, 1994.
    • (1994) Computational Intelligence , vol.10 , Issue.4 , pp. 269-293
    • Lam, W.1    Bacchus, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.