메뉴 건너뛰기




Volumn 19, Issue 6, 2007, Pages 1589-1632

A measurement fusion method for nonlinear system identification using a cooperative learning algorithm

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ANIMAL; ARTICLE; COOPERATION; HUMAN; LEARNING; NONLINEAR SYSTEM; PHYSIOLOGY;

EID: 34249694108     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2007.19.6.1589     Document Type: Article
Times cited : (1)

References (42)
  • 3
    • 2542528501 scopus 로고    scopus 로고
    • Chen, L. J., & N arendra, K. S. (2004). Identification and control of a nonlinear discrete-time system based on its linearization: A unified framework, IEEE Transactions on Neural Networks, 15, 663-673.
    • Chen, L. J., & N arendra, K. S. (2004). Identification and control of a nonlinear discrete-time system based on its linearization: A unified framework, IEEE Transactions on Neural Networks, 15, 663-673.
  • 4
    • 84954943722 scopus 로고
    • Neural networks for nonlinear dynamic system modelling and identification, international
    • Chen, S., & Billings, S. A. (1992). Neural networks for nonlinear dynamic system modelling and identification, international Journal of Control, 56, 319-346.
    • (1992) Journal of Control , vol.56 , pp. 319-346
    • Chen, S.1    Billings, S.A.2
  • 6
    • 34249732184 scopus 로고    scopus 로고
    • Drosopoulos, A. (1994). Description of the. OHGR database (Tech. Note 94-14). Ottawa, Ont.: Defence Research Establishment.
    • Drosopoulos, A. (1994). Description of the. OHGR database (Tech. Note 94-14). Ottawa, Ont.: Defence Research Establishment.
  • 8
    • 0030735959 scopus 로고    scopus 로고
    • An introduction to multisensor data fusion
    • Hall, D. L., & Llinas, J. (1997). An introduction to multisensor data fusion. Proceedings of the IEEE, 85, 6-23.
    • (1997) Proceedings of the IEEE , vol.85 , pp. 6-23
    • Hall, D.L.1    Llinas, J.2
  • 10
    • 0009873484 scopus 로고    scopus 로고
    • Chaotic dynamics of sea clutter
    • Haykin, S., & Puthusserypady, S. (1997). Chaotic dynamics of sea clutter. Chaos, 7, 777-802.
    • (1997) Chaos , vol.7 , pp. 777-802
    • Haykin, S.1    Puthusserypady, S.2
  • 11
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 12
    • 4944228528 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • Taiwan: Department of Computer Science and Information Engineering, National Taiwan University
    • Hsu, C.-W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification (Tech. Rep.). Taiwan: Department of Computer Science and Information Engineering, National Taiwan University.
    • (2003) Tech. Rep
    • Hsu, C.-W.1    Chang, C.C.2    Lin, C.J.3
  • 16
    • 0027555457 scopus 로고
    • A fast recursive least squares adaptive second-order Volterra filter and its performance analysis
    • Lee, J., & Mathews, V. J. (1993). A fast recursive least squares adaptive second-order Volterra filter and its performance analysis. IEEE Trans. Signal Processing, 41, 1087-1097.
    • (1993) IEEE Trans. Signal Processing , vol.41 , pp. 1087-1097
    • Lee, J.1    Mathews, V.J.2
  • 19
    • 0028498606 scopus 로고
    • Synthetic approach to optimal filtering
    • Lo, J. T. (1994). Synthetic approach to optimal filtering. IEEE Transactions on Neural Networks, 5, 803-811.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 803-811
    • Lo, J.T.1
  • 20
    • 0034836077 scopus 로고    scopus 로고
    • A new algorithm for linear and nonlinear ARMA model parameter estimation using affine geometry
    • Lu, S., Ju, K. H., & Chon, K. H. (2001). A new algorithm for linear and nonlinear ARMA model parameter estimation using affine geometry. IEEE Transactions on Biomedical Engineering, 48, 1116-1122.
    • (2001) IEEE Transactions on Biomedical Engineering , vol.48 , pp. 1116-1122
    • Lu, S.1    Ju, K.H.2    Chon, K.H.3
  • 22
    • 0030631861 scopus 로고    scopus 로고
    • Neural networks for functional approximation and system identification
    • Mhaskar, H. N., & Hahm, N. (1997). Neural networks for functional approximation and system identification. Neural Computation, 9, 143-159.
    • (1997) Neural Computation , vol.9 , pp. 143-159
    • Mhaskar, H.N.1    Hahm, N.2
  • 25
    • 0344116193 scopus 로고    scopus 로고
    • Neural networks in control systems
    • P. Smolen-sky, M. C. Mozer, & D. E. Rumelhart Eds, Mahwah, NJ: Erlbaum
    • Narendra, K. S., & Li, S. M. (1996). Neural networks in control systems. In P. Smolen-sky, M. C. Mozer, & D. E. Rumelhart (Eds.), Mathematical perspectives on neural networks, (pp. 374-394). Mahwah, NJ: Erlbaum.
    • (1996) Mathematical perspectives on neural networks , pp. 374-394
    • Narendra, K.S.1    Li, S.M.2
  • 27
    • 13244288637 scopus 로고    scopus 로고
    • Nonlinear system identification via direct weight optimization
    • Roll, J., Nazin A., & Ljung, L. (2005). Nonlinear system identification via direct weight optimization. Automatica, 41, 475-490.
    • (2005) Automatica , vol.41 , pp. 475-490
    • Roll, J.1    Nazin, A.2    Ljung, L.3
  • 28
    • 12844273735 scopus 로고    scopus 로고
    • A Bayesian kriged Kalman model for short-term forecasting of air pollution levels
    • Sahu, S. K., & Mardia, K. V. (1999). A Bayesian kriged Kalman model for short-term forecasting of air pollution levels. Applied Statistics, 54, 223-244.
    • (1999) Applied Statistics , vol.54 , pp. 223-244
    • Sahu, S.K.1    Mardia, K.V.2
  • 31
    • 24044515976 scopus 로고    scopus 로고
    • On a Kernel-based method for pattern recognition, regression, approximation, and operator inversion
    • Smola, A. J., & Schölkopf, B. S. (1998). On a Kernel-based method for pattern recognition, regression, approximation, and operator inversion. Algorithmica, 22, 211-231.
    • (1998) Algorithmica , vol.22 , pp. 211-231
    • Smola, A.J.1    Schölkopf, B.S.2
  • 33
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: Robustness and sparse approximation
    • Suykens, J. A. K., Brabanter, J., Lukas, L., & Vandewalle, J. (2002). Weighted least squares support vector machines: Robustness and sparse approximation. Neuro-computing, 48, 85-105.
    • (2002) Neuro-computing , vol.48 , pp. 85-105
    • Suykens, J.A.K.1    Brabanter, J.2    Lukas, L.3    Vandewalle, J.4
  • 37
    • 0000414912 scopus 로고    scopus 로고
    • A dimension-reduced approach to space-time Kalman filtering
    • Wikle, C. K., & Cressie, N. (1999). A dimension-reduced approach to space-time Kalman filtering. Biometrika, 86, 815-829.
    • (1999) Biometrika , vol.86 , pp. 815-829
    • Wikle, C.K.1    Cressie, N.2
  • 38
    • 0001201399 scopus 로고    scopus 로고
    • A new neural network for solving linear and quadratic programming problems
    • Xia, Y.S. (1996). A new neural network for solving linear and quadratic programming problems. IEEE Transactions on Neural Networks, 7, 1544-1547.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , pp. 1544-1547
    • Xia, Y.S.1
  • 39
    • 33746891187 scopus 로고    scopus 로고
    • Spatial temporal prediction based on optimal fusion
    • Xia, Y. S., & Leung, H. (2006). Spatial temporal prediction based on optimal fusion. IEEE Transactions on Neural Networks, 17, 975-988.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , pp. 975-988
    • Xia, Y.S.1    Leung, H.2
  • 40
    • 0036505995 scopus 로고    scopus 로고
    • Neural data fusion algorithms based on a linearly constrained least square method
    • Xia, Y. S., Leung, H., & Bossé, E. (2002). Neural data fusion algorithms based on a linearly constrained least square method. IEEE Transactions on Neural Networks, 13, 320-329.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 320-329
    • Xia, Y.S.1    Leung, H.2    Bossé, E.3
  • 41


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.